Applications of Actinobacterial Fungicides in Agriculture and Medicine

D. Dhanasekaran¹, N. Thajuddin¹ and A. Panneerselvam²

¹Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamilnadu,
²P.G. & Research Department of Botany & Microbiology, A.V.V.M. Sri Pushpam College, (Autonomous), Poondi, Tamil Nadu, India

1. Introduction

Actinobacteria are found in virtually every natural substrate, such as soils and compost, freshwater basins, foodstuffs and the atmosphere. Deep seas, however, do not offer a favorable habitat. These organisms live and multiply most abundantly in various depths of soil and compost, in cold and in tropical regions. Alkaline and neutral soils are more favorable habitats than acid soils and neutral peats are more favorable than acid peats.

The application of fungicides and chemicals can control crop diseases to a certain extent, however, it is expensive and public concern for the environment has led to alternative methods of disease control to be sought, including the use of microorganisms as biological control agents. Microorganisms are abundant in the soil adjacent to plant roots (rhizosphere) and within healthy plant tissue (endophytic) and a proportion possess plant growth promotion and disease resistance properties. Actinobacteria are gram-positive, filamentous bacteria capable of secondary metabolite production such as antibiotics and antifungal compounds. A number of the biologically active antifungal compounds are obtained from the actinobacteria. A number of these isolates were capable of suppressing the fungal pathogens Rhizoctonia solani, Pythium sp. and Gaeumannomyces graminis var. tritici, both in vitro and in plants indicating the potential of the actinobacteria to be used as biocontrol agents.

The principal reason behind the actinobacteria having such important roles in the soil and in plant relationships comes from the ability of the actinobacteria to produce a large number of secondary metabolites, many of which possess antibacterial activity. Actinobacteria produce approximately two-thirds of the known antibiotics produced by all microorganisms. The genus Streptomyces produces nearly 80% of the actinobacterial antibiotics, with the genus Micromonospora producing one-tenth as many as the Streptomyces. In addition to the production of antibiotics the actinobacteria produce many secondary metabolites with a wide range of activities. Activities of the secondary metabolites include antifungal agents...
that degrade cell walls and inhibit the synthesis of mannan and β-glucan enzymes, antiparasitic agents and insecticidal agents.

Actinobacteria produce a number of plant growth regulatory compounds, some of which have been used commercially as herbicides. Not all secondary metabolites are antimicrobial. Others are enzyme inhibitors, immunomodulators and antihypertensives. The actinobacteria produce over 60% of secondary metabolites produced by microorganisms, with Streptomyces accounting for over 80%.

In some cases actinobacteria form a pathogenic relationship with plants. Streptomyces scabies is a soil-borne actinobacterium that is the principal causal agent of scab diseases, which affect a variety of underground tuberous vegetables such as potato. S. scabies produces thaxtomin, a family of phytotoxins, that induce the development of necrotic lesions in potato. There is a 100% correlation between pathogenicity and the ability to produce thaxtomin. Scab suppressive soils have been identified and it has been found that the lenticels on these tubers are colonised by Streptomyces (Schottel et al., 2001). Suppressive strains of Streptomyces isolated from a naturally scab suppressive soil produced antibiotics that inhibited S. scabies in vitro (Neeno-Eckwall and Schottel, 1999).

Streptomyces species have also been implicated in the biological control of a number of other pathogens. S. ambofaciens inhibited Pythium damping-off in tomato plants and Fusarium wilt in cotton plants. S. hygroscopius var. geldanus was able to control Rhizoctonia root rot in pea plants and the inhibition was due to the production of the antibiotic geldanamycin. Streptomyces lydicus WYEC108 inhibited Pythium ultimum and R. solani in vitro by the production of antifungal metabolites (Yuan and Crawford, 1995). A number of other actinobacteria that are used in inhibiting the human and animal pathogens such as Aspergillus niger, Penicillium sp., Mucor sp., Rhizopus sp. Candida albicans, Cryptococcus neoformans. This chapter describes the potential applications of fungicidal substances from actinobacterial origin, screening methods, mode of action of fungicides against plant and animal fungal pathogens.

1.1 Antagonistic actinobacteria

The actinobacteria first recognized as potential destroyers of fungi and bacteria by Gasperini (1890). Tims (1932) studied an actinobacteria antagonistic to Pythium of sugarcane. Waksman (1937) made a detailed survey of actinobacteria possessing antagonistic effect upon the activity of other microorganisms in their studies on decomposition.

Dhanasekaran et al., (2009a) screened 78 Streptomyces isolates for their antimicrobial activity against pathogenic fungi by agar overlay assay method. Among the 78 isolates, 18 isolates showed antifungal activity. The maximum percentage of the isolates of Streptomyces, which showed antifungal antagonistic activity, was found in sea shore soil (13/27 isolates, 48.14 %) followed by salt pan soil (4/9 isolates, 44.44 %), estuarine soil (3/12 isolates, 25 %) and agricultural field soil (5/30 isolates, 16.6 %). Among the 18 isolates tested, all the isolates showed extracellular antifungal activity including 8 isolates having both extra and intracellular antifungal activity (Fig.1; Plate 1). They also studied the antifungal actinobacteria in marine soil of Tamilnadu against Candida albicans, Aspergillus niger using agar overlay, diffusion assay method (Dhanasekaran et al., 2005b) and estuarine Streptomyces against the Candida albicans (Dhanasekaran et al., 2009b)
Plate 1. Cultural and microscopic view of *Streptomyces* isolates aerial mycelium with spores.
Applications of Actinobacterial Fungicides in Agriculture and Medicine

2. In vitro screening methods of fungicidal substances produced by actinobacteria

2.1 Crowded plate technique

A series of test tubes containing 9 ml of sterile water was taken. From the stock culture, 1 ml suspension was transferred aseptically to the 1st tube (10⁻¹) and mixed well. Further serial dilutions were made to produce 10⁻³ suspensions. Suspension (0.1 ml) from each test tube was spread on sterile soyabean-casein digest medium (SBCD), actinobacteria isolation agar (AIA) medium and starch-casein agar medium plates aseptically in a laminar air flow cabinet. The plates were incubated at 27 ± 2°C for 84 h. The plates were observed intermittently during incubation. After 72 h, whitish pin-point colonies, characteristic of actinobacteria and with clear zone of inhibition around them were observed. The pinpoint colonies with inhibitory or clear zone of inhibition were selected and purified and used as a potent isolate for fungicidal compound production.

2.2 Agar streak method

The Fungicidal activity of the soil actinobacterial isolates were analyzed by agar streak method. Each of the isolate was streaked as a straight line on Starch casein agar (SCA) medium and incubated at 27°C for 6 days. After the 6th day, different fungal pathogens were streaked at right angle, but not touching each other, and then incubated at 28°C for 48 h. If the organism is susceptible to the antibiotic produced by actinobacteria, then it will not grow near the actinobacteria. The zone of inhibition against each test fungal pathogen was noted.

2.3 Agar disk method

The *Streptomyces* isolate was smeared on SCA medium as a single streak and incubated at 28°C for 4-6 days, from well grown streaks 6 mm agar disks of *Streptomyces* colony mass was prepared by using sterile cork borers. Disks were then aseptically transferred to PDA plates having fresh lawn cultures of *Aspergillus* isolate. Controls included using plain disks from...
SCA medium. Plates were incubated at 24°C for 4-6 days and fungicidal activity was evaluated by measuring the diameter of inhibition zones (mm).

2.4 Dual culture method

Antifungal activity of actinobacterial isolates were tested by dual culture technique using PDA medium. A mycelial disc of the fungal pathogen (5mm dia.) was placed at one end of the Petri plate. The actinobacterial antagonists were streaked 1 cm away from the periphery of the Petri plate just opposite to the mycelial disc of the pathogen. Visual observation on the inhibition of pathogenic fungal growth was recorded after 96 hours of incubation in comparison with the PDA plate simultaneously inoculated with fungal pathogen only as control.

Percent of test pathogen inhibition by the actinobacterial isolate was evaluated by dual culture technique. The radial growth of mycelium in mm was measured and percent inhibition (PI) was calculated.

\[
PI = \frac{C - T}{C} \times 100
\]

Where, C is the growth of test pathogen (mm) in the absence of the antagonistic isolate; T is the growth of test pathogen (mm) in the presence of the antagonistic isolate.

2.5 Agar overlay method

To evaluate the fungicidal activity of the actinobacteria, phytopathogenic filamentous fungi were used as test microorganisms. The actinobacteria were spot inoculated onto SCA medium and incubated at 28°C for 14 days. After this period, the antagonism between actinobacteria and the test fungal pathogen was evaluated using the agar overlay method. For this procedure, 10 ml of Sabouraud soft agar medium was added and inoculated with 10⁶ spores/ml of filamentous fungi. All plates were incubated at 28°C and incubation time of 7-10 days for fungi.

2.6 Well diffusion method

The sterilized Sabouraud’s dextrose agar medium (Dextrose 4.0 g, Mycological peptone 1.0 g, Agar 2.0 g, pH 5.0, Distilled Water 100 ml,) was poured to a petridish in a uniform thickness and kept aside for solidification. Using sterilized swabs, even distribution of lawn culture was prepared using desired fungi such as A. niger, P. notatum, C. albicans in SDA plates. Using sterile well cutter two wells were made in plates at required distance. 20μl of different solvents treated test fungicidal compound was added in to one well and another well was loaded with corresponding control (solvent without compound). The plates were incubated at room temperature for 48 hours. After incubation, the zone of inhibition was analyzed and recorded.

2.7 Paper disc assay

2.7.1 Preparation of disc

The filter paper disc were impregnated with 5μg/μl antifungal compound + 25μl distilled water, similar procedures were used to prepare the other concentrations of the disc such as 10μg/μl + 20μl distilled water, 15μg/μl + 15μl distilled water, 20μg/μl + 10μl distilled water, 30μg/μl + 1μl distilled water.
Plate 2. *In vitro* screening methods for Fungicidal substances produced by actinobacteria
2.7.2 Inoculum preparation

All the clinical pathogens were prepared in 0.85% saline corresponding to No. 0.5 McFarland turbidity standard. All cultures were incubated on a shaker at 37°C for 18 h and then diluted to 1/10 the concentration to yield a culture density of approximately 10^8 CFU/ml. The pathogens used in the study such as Candida albicans, Cryptococcus neoformans and Aspergillus flavus for sensitivity assay.

2.7.3 Antifungal assay

Mueller Hinton agar (Beef extract 0.2 g, Peptone 1.75g, Starch 0.15g, Agar 2.0g, Distilled water 100 ml, pH 7.5) prepared with lawn culture using desired test organisms. The inoculated plates were kept aside for few minutes. The discs with fungicidal compound were placed over the medium. After diffusion, the plates were incubated at 28°C for 48 hours for antifungal analysis. After incubation, the zone of inhibition was analyzed and recorded.

2.8 Determination of Minimum Inhibitory Concentrations (MIC)

To measure the MIC value, two-fold serial dilutions of 50, 25, 12.5, 6.25, 3.125, 1.562 and 0.781 mg ml$^{-1}$ of the fungicidal compound was prepared in solvent and assayed by well diffusion method. The MIC was defined as the lowest concentration able to inhibit any visible fungal growth.

3. Fungicidal potential of actinobacteria against phytopathogen in crop plants

Fungal phytopathogens pose serious problems worldwide and cause a number of plants and animal diseases such as ringworm, athlete's foot, and several more serious diseases. Plant diseases caused by fungi include rusts, smuts, rots, and may cause severe damage to crops. Fungi are some of the world's largest and possibly oldest individuals.

Agrochemical treatment may result in environmental impact and pose a threat to humans and animals. As a result, there has been an increase in research on potential Biocontrol agents, aimed at finding a definitive solution or at least reducing pesticide use in the treatment of phytopathogenic diseases.

Actinobacteria have been considered as potential Biocontrol agents of plant diseases. Several investigators have described the in $vitro$ and in $vivo$ activities of the actinobacteria. Their modes of action includes parasitism of hyphae (El-Tarabily and Sivasithamparam, 2006), oospores or fungal sclerotia (Crawford et al., 1993) competition with pathogens (Kunoh, 2002), antibiotic production (Igarashi, 2004), siderophores (Khamna et al., 2009), as herbicides (Hasegawa et al., 2006), and via enzymes such as cellulases, hemicellulases, chitinases, amylases, and glucanases (Yuan and Crawford, 1995).

In addition, actinobacteria may affect plant growth (Igarashi, 2004). According to Kunoh (2002), endophytic Streptomyces may play an important role in the development and health of plants, because it affects plant growth due to its assimilation of nutrients and production of secondary metabolites. The tomato (Lycopersicon esculentum) is highly susceptible to phytopathogen attack, and tomato crops are most intensively treated with agrochemicals.
Among the many fungal pathogens that attack tomatoes are *Phytophthora infestans*, *Alternaria solani*, *Sclerotinia sclerotiorum*, *Rhizoctonia solani*, *Fusarium oxysporum*. Most of these pathogens not only spread disease in tomato plants, but also affect other crops. According to Cao et al. (2004a), *R. solani* can develop in both farmed and unfarmed soils, spreading disease in many crops, including rice. *F. oxysporum* attacks banana plants, causing a disease known as fusarium wilt (Cao et al., 2004b) and also infects wheat (Taechowisan et al., 2003). *R. solanacearum* is an important soil pathogen causing bacterial wilt in more than 200 plant species, including the potato, tomato, pea, tobacco, banana and others (Tan et al., 2006).

Marten et al. (2001) reported that RhizovitR from Streptomyces rimosus is used in the control of a wide range of fungi such as *Pythium* spp., *Phytophthora* spp., *Rhizoctonia solani*, *Alternaria brassicola*, and *Botrytis* sp. Liu et al. (2004a) also reported that *S. rimosus* showed a high antagonism activity against *Fusarium solani*, *F. oxysporium* f sp. *cucumarinum*, *Verticillium dahliae*, *R. solani*, *Fulvia fulva*, *Botrytis cinerea*, and *A. alternata*, *Sclerotinia sclerotiorum* and *Bipolaris maydis*. The antifungal antibiotic, which is produced by *S. rimosus*, was purified by silica gel column chromatography. Its ultraviolet (UV) spectrum was consistent with that of polyene macrolide, which had the same absorption peaks at 291, 305, and 318 nm. Antifungal activity can be kept for 20 months at room temperature (12–30°C, pH 5.4) (Liu et al., 2004b). So *S. rimosus* will be employed as a target to search for new biocontrol agents or drugs to satisfy public demands, and much interests will be generated (Table 1).

<table>
<thead>
<tr>
<th>Name of the actinobacteria</th>
<th>Fungicidal activity against</th>
<th>Disease control</th>
<th>Investigator(s) and year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actinomycetes</td>
<td>Fusarium oxysporum</td>
<td>Vascular wilt in Tomato</td>
<td>Meredith, 1946</td>
</tr>
<tr>
<td></td>
<td>F. cubense</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Penicillium graminicolum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streptomyces antibioticus</td>
<td>Helminthosporium sativum</td>
<td>Seedling blight and root rot of cereals</td>
<td>Stevensson, 1956</td>
</tr>
<tr>
<td>Streptomyces aureus</td>
<td>H. oryzae</td>
<td>Brown leaf spot of Rice Stem blight disease of Cassava</td>
<td>Chakraborty and Chandra, 1979</td>
</tr>
<tr>
<td>S. globus</td>
<td>Alternaria solani</td>
<td>Early blight in potato and Tomato Pod, seed rot of peanut Black mould of onion Wilt and root rot</td>
<td>Paul and Hanseyee, 1983</td>
</tr>
<tr>
<td></td>
<td>A. niger</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C. pallescens</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phytophthora sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. arabicus</td>
<td>A. brassicar</td>
<td>Blight, black leaf spot in cruciflowers, cabbage, radish</td>
<td>Sharma et al., 1983; El-Shahed, 1994</td>
</tr>
<tr>
<td></td>
<td>Helminthosporium sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fusarium sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pyricularia sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sclerotinia sclerotiorum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streptomyces sp.</td>
<td>Phytophthora sp.</td>
<td>Blights of leaves and shoots and root and crown rots in Ericaceae (Rhododendrons, azaleas, etc.)</td>
<td>Omura et al., 1988; Omura, 1990; Hwang et al., 1994; Tang et al., 2000</td>
</tr>
<tr>
<td>S. griseochromogenes</td>
<td>S. scabies</td>
<td>Scab on potatoes, beets, radish, rutabaga, turnip, carrot and parsnips Late blight or potato blight</td>
<td>Cheng et al., 1989 Philips and Mc Closkey, 1990 Eckwall and Scholten, 1997 Xiao et al., 2002</td>
</tr>
<tr>
<td></td>
<td>Botrytis sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phytophthora</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streptomyces sp.</td>
<td>Phytophthora capsici</td>
<td>Blight in Capsicum annuum</td>
<td>Kook and Kim, 1995</td>
</tr>
</tbody>
</table>
Some species of fungi produce mycotoxins that are very toxic to humans. For example, the fungus *Claviceps purpurea* causes the ergot poisoning. An individual infected with the mycotoxin experiences hallucination, gangrene, and blood flow restrictions in limbs. Humans usually get infected with the fungus after eating cereal grains contaminated with *C. purpurea*.

The incidence of opportunistic mycoses and the number of different fungal pathogens are increasing dramatically. During the 1980s, the frequency of nosocomial candidemia increased as much as 500% over the decade (Mitchell 1998). High mortality and increasing antifungal drug resistance are also major concerns. These trends will continue unless better preventive or treatment measures are developed. The traditional approach is to increase the screening programmes that are still being initiated in various countries for the isolation of antibiotic producing microorganisms from the environment, especially marine and terrestrial soil, which provide a rich source for these organisms, particularly the actinobacteria (Labeleda & Shearer 1990). It has been estimated that approximately two-thirds of naturally occurring antibiotics have been isolated from actinobacteria (Takizawa et al. 1993). Of these antibiotics, the majority were isolated from the genus *Streptomyces* (Goodfellow & O'Donnell 1989).

Table 1. Fungicidal activity of actinobacterial isolates against plant pathogens

<table>
<thead>
<tr>
<th>Name of the actinobacteria</th>
<th>Fungicidal activity against</th>
<th>Disease control</th>
<th>Investigator(s) and year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streptomyces sp.</td>
<td>F. moniliforme, F. oxysporum, Botrytis pumilis C. albicans</td>
<td>Ear-rotting in maize Wilt on banana, tomato</td>
<td>Haque et al., 1992 Abuasenaal, 1996 Malviya et al., 1994 Saadoun et al., 2000.b Singh et al., 2009</td>
</tr>
</tbody>
</table>

4. Fungicidal potential of actinobacteria against human fungal pathogens

Some species of fungi produce mycotoxins that are very toxic to humans. For example, the fungus *Claviceps purpurea* causes the ergot poisoning. An individual infected with the mycotoxin experiences hallucination, gangrene, and blood flow restrictions in limbs. Humans usually get infected with the fungus after eating cereal grains contaminated with *C. purpurea*.

The incidence of opportunistic mycoses and the number of different fungal pathogens are increasing dramatically. During the 1980s, the frequency of nosocomial candidemia increased as much as 500% over the decade (Mitchell 1998). High mortality and increasing antifungal drug resistance are also major concerns. These trends will continue unless better preventive or treatment measures are developed. The traditional approach is to increase the screening programmes that are still being initiated in various countries for the isolation of antibiotic producing microorganisms from the environment, especially marine and terrestrial soil, which provide a rich source for these organisms, particularly the actinobacteria (Labeleda & Shearer 1990). It has been estimated that approximately two-thirds of naturally occurring antibiotics have been isolated from actinobacteria (Takizawa et al. 1993). Of these antibiotics, the majority were isolated from the genus *Streptomyces* (Goodfellow & O'Donnell 1989).
Saadoun et al. (2000b) identified several *Streptomyces* isolates from soils in northern Jordan which were bioassayed for their antifungal activity against several food-associated fungi and moulds isolated from olive-mill residue. Dhanasekaran et al. (2008) reported the antifungal compound 4’ phenyl-1-napthyl-phenyl acetamide from *Streptomyces* sp. DPTB16. It showed significant antifungal activity against *Candida albicans* followed by *Aspergillus niger, A. fumigatus, A. flavus* and minimum inhibitory activity was observed with *Mucor* sp. and *Penicillium* sp. Kumar and Kannabiran (2010b) reported the antifungal activity of *Streptomyces* VITSVK5 spp. against drug resistant *Aspergillus* clinical isolates from pulmonary tuberculosis patients.

Dermatophyte infections are one of the earliest known fungal infections of mankind and are very common throughout the world. There are three genera of dermatophytes, such as *Trichophyton, Microsporum* and *Epidermophyton*. Dermatophytoses are world wide in distribution with high prevalence in tropical and sub-tropical countries due to the hot and humid climate which favours their growth. As the dermatophytes have developed resistance to antymycotic drugs and due to a lack of safe and effective antifungal antibiotics, there is an urgent need for nontoxic, safe and cost effective antifungal antibiotics. Deepika et al. (2009) reported the actinobacteria exhibiting antidermatophytic activity against *Trichophyton rubrum* were identified among 100 isolates by cross streak method. Among them only two actinobacterial isolates DKD 6 and DKD 7 exhibiting potential antidermatophytic activity and further characterized and identified as *Streptomyces* sp (Table 2; Plate 3).

<table>
<thead>
<tr>
<th>Organism</th>
<th>Activity against</th>
<th>Disease control</th>
<th>Investigator(s) and year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streptomyces spp.</td>
<td>Trichophyton sp., Fusarium sp., Penicillium sp.</td>
<td>Dermatophytes - Trichophytosis in humans and animals</td>
<td>Leben et al., 1952</td>
</tr>
<tr>
<td>S. aureus</td>
<td>T. mentagrophytes</td>
<td>Tinea in man and animals</td>
<td>Chakrabarty and Chandra, 1979</td>
</tr>
<tr>
<td>S. hygroscopicus</td>
<td>T. mentagrophytes and C. albicans</td>
<td>Tinea in man and animals Oral thrush in man and animals</td>
<td>Gerassimides et al., 1979</td>
</tr>
<tr>
<td>S. globus</td>
<td>C. albicans</td>
<td>Tinea capitis in Man and animals</td>
<td>Hwang et al., 1996</td>
</tr>
<tr>
<td>S. avercoligenes</td>
<td>C. albicans</td>
<td>Oral thrush and vaginal candidiasis (vaginal Candidiasis)</td>
<td>Nishio et al., 1989</td>
</tr>
<tr>
<td>S. roteiseteriorum (Sulitecin) and S. hygroscopicus (Youstitecin)</td>
<td>Cryptococcus neoformans Blastomyces dermatitides A. fumigatus F. moniliforme P. brasiliense C. albicans T. mentagrophytes</td>
<td>Cryptococcal meningitis Dermatrichids in skin bronchopulmonary aspergillosis - Visceral infections - endocarditis - Ringworm infections of man, domestic and captive animals such as horses, chinchillas, dogs, cats, calves, and monkeys, as well as many wild animals such as foxes, martens, squirrels</td>
<td>Okkuma et al., 1992 Imambara et al., 1993 Atalan, 1997; Zheng et al., 2003 Datta et al., 2001</td>
</tr>
<tr>
<td>S. violaceomus (new-macroile)</td>
<td>C. neoformans, C. albicans, C. tropicalis, C. parapsilosis, C. glabrata, A. fumigatus, C. glaucopsidans A. flavus, T. mentagrophytes, T. rubrum, M. canis, M. gyipseum, M. grisea</td>
<td>- Tinea barbae, unguim, pedis Ecuthrax Hair infection, Tinea barbae</td>
<td>Ubukata et al., 1995; Ushida et al., 1996</td>
</tr>
<tr>
<td>Streptomyces sp.</td>
<td>Candida albicans, Cryptococcus neoformans, Aspergillus terreus, Aspergillus niger, Penicillium funiculosum, Trichophyton rubrum, Alternaria alternata, Alternaria brassicae, Fusarium moniliforme, Aspergillus parasiticus, Aspergillus ochraceus</td>
<td>Lungs pneumonia - - Upper respiratory tract infections and asthma Mycotic keratitis Aflatoxicosis Mycotoxicosis</td>
<td>Banga et al., 2008 Deepika et al., 2009 Valen Acuna et al., 2009 Arumugum et al., 2010 Kumar and Kannabiran, 2010a Durairajuniyan et al., 2019</td>
</tr>
<tr>
<td>Streptomyces sp. DPTB16</td>
<td>Aspergillus flavus, A. niger, A. fumigatus, Mucor sp. Penicillium sp. Candida albicans</td>
<td>Bronchopulmonary aspergillosis Pulmonary Zygomycosis Pulmonary geotrichosis, Keratitis</td>
<td>Dhanasekaran et al., 2008; 2009a</td>
</tr>
</tbody>
</table>

Table 2. Fungicidal activity of actinobacterial isolates against human pathogens
Plate 3. Antifungal activity 4’ phenyl-1-napthyl-phenyl acetamide and methyl substituted \(\beta \)-lactum compounds of *Streptomyces* isolates DPTB16 and DPTD21

5. Characterization of actinobacterial fungicidal compounds

A novel antifungal antibiotic, FR-900848 was isolated from *Streptoverticillium fervens* and its physico-chemical and biological properties have been reported (Yoshida and Horikoshi, 1988). Tomita *et al.* (1989) reported that Pradimicins A, B and C as new antifungal antibiotics from *Streptomyces* sp. Fushimi *et al.* (1989b) reported new phosphate ester antifungal antibiotics phoslactomycins and elucidated the structure of phoslactomycins A to F.

Yamaguchi *et al.* (1989) studied the mode of antifungal action of (S)2-amino-4-oxo-5-hydroxypentanoic acid, RI-331 derived from *Streptomyces* sp. Schwartz *et al.* (1988) studied L-671, 329, a new antifungal agent from *Streptomyces* strain.
Oki et al. (1989) studied cispentacin, a new antifungal antibiotic and its in vitro and in vivo antifungal activities. Novel antifungal antibiotics, Maniwamycins A and B I and II and their structure were studied and reported (Nakayama et al., 1989; Takahashi et al., 1989).

Konishi et al. (1989) studied the production, isolation, physico-chemical properties and its structure of cispentacin, a new antifungal antibiotic. A novel hepatoprotective γ-lactone, MH-031 was discovered and their physico-chemical properties and structure have been reported (Itoh et al., 1991). Nishio et al. (1989) reported Karnamicin, a complex of new antifungal antibiotic from Streptomyces sp. and its taxonomy, fermentation, physico-chemical and biological properties.

Sawada et al. (1990) reported new antifungal antibiotics, pradimicins D and E glycine analogs of pradimicins A and C. Water-soluble pradimicin derivatives synthesis and antifungal evaluation of N, N-dimethyl pradimicins derived from Actinomadura hibisca was studied and reported (Oki et al., 1990a,b).

Kakushima et al. (1990) studied the effect of stereochernistry at the C-17 position on the antifungal pradimicin A. Stephan et al. (1996) was observed that Kanchanamycins, new polyol macrolide antibiotics produced by S. olivaceus. The structures of the Kanchanamycins were determined by electrospay MS and modern 2D NMR techniques. A Manumycin type antibiotic (SW-B) was isolated from a solid agar culture of S. flavus strain A-11. The structure was determined by MS and by 1 and 2D NMR spectroscopy (Kook et al., 1996).

Harindran et al. (1999) isolated a new antifungal antibiotic, HA-1-92 from the biomass of Streptomyces CDRIL-312. The antibiotic is presumed to be an oxehexaene macrolide and showed promising antifungal activity against yeasts and filamentous fungi. The structure elucidation and antifungal activity of plants an anthracycline antibiotic, daunomycin, isolated from Actinomadura roseola against Phytophthora blight in pepper have been reported (Kim et al., 2000). A new tetrane polyene macrolide antibiotic was isolated from the culture broth of S. arenae var. ukrainiana and its structure was determined on the basis of spectral data such as UV, IR, 1H, 13C NMR and Mass spectroscopy (Gupte et al., 2000). The isolation and structure elucidation of a new antifungal and antibacterial antibiotic produced by Streptomyces sp. have been reported (Bordoloi et al., 2001).

Hwang et al., (2001) isolated the antifungal substances SH-1 and SH-2 from Streptomyces humidus strains SE 55 cultures by various purification procedures and identified as phenyl acetic acid and sodium phenyl acetate respectively based on the nuclear magnetic resonance, electron ionization mass spectral analysis and inductively coupled plasma mass spectral data SH-1 and SH-2. The two compounds were as effective as the fungicide metalaxyl in inhibiting spore germination and hyphal growth. Raytapadar and Paul (2001) found a broad-spectrum antifungal Streptomyces isolate IDA-28 from Indian soil, which was characterized and identified as Streptomyces aburaviensis var. ablastmyceticus (MTCC 2469).

Frandberg et al. (2000) observed antifungal compounds on solid substrate that inhibit radial growth of fungi among Ascomycetes, Basidiomycetes, Deuteromycetes, Oomycetes and Zygomycetes and strongly affected hyphal branching and morphology of the fungus such as Aspergillus niger, Mucor hiemalis, Penicillium roqueforti and Paecilomyces variotii.

Ellis (2002) reported that Amphotericin B is a polyene macrolide antibiotic derived from the actinomycete, Streptomyces nodosus. Amphotericin B has a relatively broad spectrum of
action and is useful in treating cases of Candidiasis, extracutaneous sporotrichosis, Mucormycosis and some cases of hyalohyphomycosis and Phaeohyphomycosis.

Igarashi et al. (2003) screened for novel antifungal compound, Yatakemycin from the Streptomyces species TP - AO 356. Yatakemycin were obtained by solvent extraction of the fermentation broth and preparative HPLC. NMR elucidated the structure of Yatakemycin and CID - MS/MS experiments as a novel antibiotic belonging to a family of CC - 1065 and duocarmycins known to be DNA alkylating agents. Yatakemycin inhibited the growth of pathogenic fungi such as Aspergillus fumigatus and Candida albicans with the MIC values of 0.01 - 0.03 μg/ml more potent than amphotericin B (MIC 0.1 - 0.5 μg/ml). It also showed potent cytotoxicity against cancer cell lines with the IC₅₀ of 0.01 - 0.3 μg/ml.

Datta et al. (2001) studied the Ju-2 a novel phosphorous-containing antifungal antibiotic from Streptomyces kanamyceticus M8. Ellaiah et al. (2005) studied the characteristics of oligosaccharide antibiotic by ¹H NMR and ¹³C NMR spectra and elucidated the structural formula as C₁₄H₆₈O₁₇. Separation, purification and structural elucidation of Irumamycin and 17-hydroxy-venturicidin were established by IR, ESI-MS, ¹H and ¹³C NMR data (Fourati et al., 2005). The numerous fungicidal compounds from actinobacterial genera are summarized in the Table. 3

6. In silico molecular mechanism of action of fungicidal compounds

Computational biology has now become an indispensable part in research to understand the biological process in a better way at a short period. In silico molecular docking is an application area in bioinformatics, which studies the interaction between the molecules by fitting the molecules in a 3D space. The interactions between protein-protein, protein – DNA, protein – small molecule (drug) and even within carbohydrates and lipid molecules can be studied using docking tools.

Docking tools are automated, available both in online and offline, most of the offline tools are commercial tools. Each tool has its own advantage. Some of the online tools are patch dock (bioinfo3d.cs.tau.ac.il/PatchDock/), Zdock server (zdock.bu.edu/), Dock blaster (blaster.docking.org/). Few non commercial docking tools are Hex, Autodock, Dock, MS-dock and few commercial tools are Flexidock, GOLD, HADDOCK.

Molecular docking studies can also be performed for fungicides. As fungicides are the chemical compounds used to kill or inhibit fungi or fungal spores. The fungicides act primarily by inhibiting any of the process: electron transport chain, nucleic acid synthesis, mitosis and cell division, protein synthesis, lipid and membrane synthesis, sterol biosynthesis. The enzyme involved in any of the above mentioned process can be considered as a target receptor and the fungicide as ligand.

In case of a fungicide that targets sterol biosynthesis (DM inhibitors), CYP 51 enzyme (14 -α demethylase) involved in the ergosterol biosynthesis can be chosen as a target (Yang, et al., 2009). The docking studies require the 3D structure of the target enzyme. If the 3D structure of the target enzyme is not already available, then homology modeling can be performed.

The docking tools calculate the binding energy between the fungicide and the enzyme target. The binding energy is denoted as E value. The E value for the docked complex should be more negative. The more negative the E value, more stable the docking complex formed.
<table>
<thead>
<tr>
<th>S.No.</th>
<th>Compound</th>
<th>Source</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>FK520 Ascomycin</td>
<td>Streptomyces hygroscopicus var.ascomyceticus</td>
<td>Wu et al.,(2000)</td>
</tr>
<tr>
<td>4.</td>
<td>Amphotericin B</td>
<td>Streptomyces nodosus</td>
<td>Caffrey et al.,(2001)</td>
</tr>
<tr>
<td>10.</td>
<td>Scopafungin</td>
<td>Streptomyces hygroscopicus var. enhyrus var. nova UC-2397</td>
<td>Samain et al.,(1982)</td>
</tr>
<tr>
<td>15.</td>
<td>Phoslactomycins</td>
<td>Streptomyces nigrescens</td>
<td>Fushimi et al., (1989a)</td>
</tr>
<tr>
<td>19.</td>
<td>Kalafungin</td>
<td>Streptomyces tanashiensis strain Kala UC5063</td>
<td>Johnson and Dietz (1968)</td>
</tr>
<tr>
<td>20.</td>
<td>Lomofungin</td>
<td>Streptomyces lomodensis</td>
<td>Johnson and Dietz (1969)</td>
</tr>
<tr>
<td>22.</td>
<td>Candidoplanecin</td>
<td>Ampullariella reguralis subsp.mannitophila subsp. nov.</td>
<td>Itoh et al.,(1981)</td>
</tr>
<tr>
<td>23.</td>
<td>Milbemycins</td>
<td>Streptomyces hygroscopicus sub sp. aureola rimosus</td>
<td>Takahashi et al.,(1993)</td>
</tr>
<tr>
<td>27.</td>
<td>Leptomycin</td>
<td>Streptomyces lividans</td>
<td>Hu et al.,(2005)</td>
</tr>
<tr>
<td>28.</td>
<td>RS-22 A, B and C</td>
<td>Streptomyces violaceusnger</td>
<td>Ubukata et al., 1995a,b</td>
</tr>
<tr>
<td>29.</td>
<td>Methyl substituted β-lactum compound</td>
<td>StreptomycesDPTD21</td>
<td>Dhanasekaran, 2005a</td>
</tr>
<tr>
<td>30.</td>
<td>4’ phenyl-1-naphthyl-phenyl acetamide</td>
<td>StreptomycesDPTB16</td>
<td>Dhanasekaran et al., 2008</td>
</tr>
</tbody>
</table>

Table 3. Fungicidal secondary metabolites produced by actinobacteria
Computational advancement also provides way to modify the functional group of the fungicide, leading to the creation of analogues of the fungicide. These docking approaches provide insight into the structure based drug designing. Structure based drug designing assist in the creation of novel fungicides that can be used to treat already existing drug resistant fungal pathogens.

The interaction between the fungicide and the enzyme target will always by hydrogen bond formation between electropositive and electronegative atom. For an enzyme target to get disrupted, the H bond formation of the fungicide should be within the active site of the target.

The knowledge about the active site of the target enzyme can be obtained using online active site predicting tools. Few such tools include: CASTp – Computed Atlas of Surface Topography of proteins (http://sts.bioengr.uic.edu/castp/calculation.php), Q-site finder (http://www.modelling.leeds.ac.uk/qsitefinder/), and Pocket finder (http://www.modelling.leeds.ac.uk/pocketfinder/).

The antifungal compound isolated from the marine *Streptomyces* sp. DPTB16 was characterized as 4-Phenyl-1-Napthyl Phenyl Acetamide and its 1D structure was also elucidated via spectral analysis (Fig.2). The structure of the compound was submitted to Pubchem compound database with accession number CID: 49786168 (Fig.3,4,5).

Fig. 2. The elemental representation of 4 - Phenyl 1-Napthyl Phenyl Acetamide

![Elemental representation of 4 - Phenyl 1-Napthyl Phenyl Acetamide](image.png)

Fig. 3. The 3D structure of 4P1NPA in Pubchem compound database (CID: 49786168)
In silico tools are fruitful to gain insight into the mode of action of fungicides and help the research to move a step ahead leading to the rational drug discovery.

Fig. 4. Cytochrome 51 docking complex with a fungicidal compound (4P1NPA)

Fig. 5. H bond formation between cytochrome 51 and fungicidal compound (4P1NPA)
7. Conclusion

Actinobacteria isolated from marine habitat have potential for novel fungicidal compounds. The significance of finding actinobacteria in marine soil sample lies in the intrinsic economic importance in biotechnological perspectives. The chapters reinforce the view that the unexplored actinobacteria for bioprospecting novel fungicidal compound in the development of Biocontrol agents and formulations of drugs. Further investigation should address the relationship between structure relationship activity of fungicidal compounds, rapid methods for large scale production, purification and application in managing fungal infection in agriculture crops, human and animals.

8. References

Dhanasekaran, D., Panneerselvam, A. and N. Thajuddin, 2009a. Distribution and ecobiology of antagonistic Streptomyces from agriculture and coastal soil of Tamil Nadu, India, Journal of Culture collections,6,10-20

Liu et al., 2004a Q. Liu, Y.H. Wu and J.C. Yu, Screening for antagonistic actionmyces isolates from greenhouse soil in northeast china, Soil 36:. 573-575.

Mitchell, T.G. 1998 Medical mycology research and training: needs and opportunities. ASM News 64, 17-23.

Thakur D., Yadav, A., Gogoi, B.K and T.C. Bora. 2007. Isolation and screening of Streptomyces in soil of protected forest areas from the states of Assam and Tripura, India, for antimicrobial metabolites Journal de Mycologie Médicale 17, 242—249.

Zhang, J, Wang, XJ, Yan YJ, Jiang, L, Wang, JD, Li BJ, and WS. Xiang. 2010. Isolation and identification of 5-hydroxyl-5-methyl-2-hexenoic acid from *Actinoplanes* sp. HBDN08 with antifungal activity, Bioresource Technology 101: 8383–8388

A fungicide is a chemical pesticide compound that kills or inhibits the growth of fungi. In agriculture, fungicide is used to control fungi that threaten to destroy or compromise crops. Fungicides for Plant and Animal Diseases is a book that has been written to present the most significant advances in disciplines related to fungicides. This book comprises of 14 chapters considering the application of fungicides in the control and management of fungal diseases, which will be very helpful to the undergraduate and postgraduate students, researchers, teachers of microbiology, biotechnology, agriculture and horticulture.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following: