A Recombination Puzzle Solved: Role for New DNA Repair Systems in *Helicobacter pylori* Diversity/Persistence

Ge Wang and Robert J. Maier

Department of Microbiology, University of Georgia, Athens, Georgia

1. Introduction

1.1 *Helicobacter pylori* pathogenesis

Helicobacter pylori is a gram-negative, slow-growing, microaerophilic, spiral bacterium. It is one of the most common human gastrointestinal pathogens, infecting almost 50% of the world’s population [1]. Peptic ulcer disease is now approached as an infectious disease, and *H. pylori* is responsible for the majority of duodenal and gastric ulcers [2]. There is strong evidence that *H. pylori* infection increases the risk of gastric cancer [3], the second most frequent cause of cancer-related death. *H. pylori* infections are acquired by oral ingestion and is mainly transmitted within families in early childhood [2]. Once colonized, the host can be chronically infected for life, unless *H. pylori* is eradicated by treatment with antibiotics.

H. pylori is highly adapted to its ecologic niche, the human gastric mucosa. The pathogenesis of *H. pylori* relies on its persistence in surviving a harsh environment, including acidity, peristalsis, and attack by phagocyte cells and their released reactive oxygen species [4]. *H. pylori* has a unique array of features that permit entry into the mucus, attachment to epithelial cells, evasion of the immune response, and as a result, persistent colonization and transmission. Numerous virulence factors in *H. pylori* have been extensively studied, including urease, flagella, BabA adhesin, the vacuolating cytotoxin (VacA), and the cag pathogenicity island (cag-PAI) [5]. In addition to its clinical importance, *H. pylori* has become a model system for persistent host-associated microorganisms [6]. How *H. pylori* can adapt to, and persist in, the human stomach has become a problem of general interest in both microbial physiology and in pathogenesis areas.

1.2 Genetic diversity of *H. pylori*

H. pylori displays exceptional genetic variability and intra-species diversity [7]. Allelic diversity is obvious as almost every unrelated isolate of *H. pylori* has a unique sequence when a sequenced fragment of only several hundred base pairs is compared among strains for either housekeeping or virulence genes [8-10]. Approximately 5% nucleotide divergence is commonly observed at the majority of gene loci between pairs of unrelated *H. pylori* strains [11]. *H. pylori* strains also differ considerably in their gene contents, the genetic macro-diversity. The two sequenced strains 26695 and J99 share only 94% of their genes, whereas approximately 7% of the genes are unique for each strain [12, 13]. Supporting
studies using whole-genome microarray detected numerous genomic changes in the paired sequential isolates of *H. pylori* from the same patient [14, 15].

Mechanisms proposed to account for the observed genetic variability include mainly the high inherent mutation rate and high frequency of recombination [16]. The spontaneous mutation rate of the majority of *H. pylori* strains lies between 10^{-5} and 10^{-7} [17]. This is several orders of magnitude higher than the average mutation rate of *Escherichia coli*, and similar to that of *E. coli* strains defective in mismatch repair functions (mutator strains) [18]. While mutation is essential for introducing sequence diversity into the species, a key role in generating diversity is played by recombination. *H. pylori* is naturally competent for DNA transformation, and has a highly efficient system for recombination of short-fragment involving multiple recombination events within a single locus [19, 20]. A special apparatus homologous to type IV secretion system (T4SS, encoded by *comB* locus) is dedicated to a DNA uptake role [21, 22] and a composite system involving proteins at the *comB* locus and ComEC mediates two-step DNA uptake in *H. pylori* [23]. T4SS systems are known to transport DNA and proteins in other bacteria, but *H. pylori* is the only species known to use a T4SS for natural competence [24]. Unlike several other bacterial species, *H. pylori* does not require specific DNA sequences for uptake of related DNA [25]. Instead, numerous and efficient restriction modification systems take over the function as a barrier to horizontal gene transfer from foreign sources [26, 27]. Population genetic analyses of unrelated isolates of *H. pylori* indicated that recombination was extremely frequent in *H. pylori* [9, 28]. There is evidence that humans are occasionally infected with multiple genetically distinct isolates and that recombination between *H. pylori* strains can occur in humans [29, 30]. Using mathematical modeling approaches on sequence data from 24 pairs of sequential *H. pylori* isolates, Falush et al. [31] estimated that the mean size of imported fragments was only 417 bp, much shorter than that observed for other bacteria. The recombination rate per nucleotide was estimated as 6.9×10^{-5}, indicating that every pair of strains differed on average by 114 recombination events. Compared to other bacteria studied in this way [32-34], the recombination frequency within *H. pylori* is extraordinarily high. The *H. pylori* genome also has extensive repetitive DNA sequences that are targets for intragenomic recombination [35].

2. Overview of DNA repair in *H. pylori*

Oxidative DNA damage represents a major form of DNA damage. Among the many oxidized bases in DNA, 8-oxo-guanine is a ubiquitous biomarker of DNA oxidation [36]. In addition, acid (low pH) conditions may result in DNA damage via depurination [37]. *H. pylori* survives on the surface of the stomach lining for the lifetime of its host and causes a chronic inflammatory response. Several lines of evidence suggest that *H. pylori* is exposed to oxidative damage soon after infection [38, 39]. Under physiological conditions, *H. pylori* is thought to frequently suffer oxidative and acid stress [40, 41]. In addition to diverse oxidant detoxification enzymes (e.g. superoxide dismutase, catalase, and peroxiredoxins) [42] and potent acid avoidance mechanisms (mainly urease) [43], efficient DNA repair systems are required for *H. pylori* to survive in the host.

2.1 DNA repair systems in *H. pylori*

The whole genome sequences of *H. pylori* revealed it contains several DNA repair pathways that are common to many bacterial species, while it lacks other repair pathways or contains
only portions of them. *H. pylori* encodes the homologues of all four members of the nucleotide excision repair (NER) pathway; these are UvrA, UvrB, UvrC, and UvrD, all of which are well conserved in bacteria. NER deals with DNA-distorting lesions, in which an excinuclease removes a 12- to 13- nucleotide segment from a single strand centered around the lesion; the resulting gap is then filled in by repair synthesis [44]. Loss of *uvrB* in *H. pylori* was shown to confer sensitivity to UV light, alkylating agents and low pH, suggesting that the *H. pylori* NER pathway is functional in repairing a diverse array of DNA lesions [45]. *H. pylori* UvrD was shown to play a role in repairing DNA damage and limiting DNA recombination, indicating it functions to ultimately maintain genome integrity [46].

The methyl-directed mismatch repair system (MMR), consisting of MutS1, MutH, and MutL, is conserved in many bacteria and eukaryotes, and it plays a major role in maintaining genetic stability. MMR can liberate up to 1000 nucleotides from one strand during its function to correct a single mismatch arising during DNA replication [47]. Notably, MMR does not exist in *H. pylori*, contributing to the high mutation rates observed in *H. pylori* [17]. *H. pylori* has a MutS homologue that belongs to the MutS2 family. *H. pylori* MutS2 was shown to bind to DNA structures mimicking recombination intermediates and to inhibit DNA strand exchange, thus it may play a role in maintaining genome integrity by suppressing homologous and homeologous DNA recombination [48]. In addition, *H. pylori* MutS2 appears to play a role in repairing oxidative DNA damage, specifically 8-oxo-guanine [49].

Damaged bases can be repaired by a variety of glycosylases that belong to the base excision repair (BER) pathway. All glycosylases can excise a damaged base resulting in an apurinic/apyrimidinic (AP) site, while some of them additionally nick the DNA deoxyribose-phosphate backbone (via an AP lyase activity). *H. pylori* harbors the glycosylase genes *ung*, *mutY*, *nth*, and *magIII*, whereas several other genes appear to be absent from the *H. pylori* genome, e.g. *tag*, *alkA*, and *mutM*. The *H. pylori* endonuclease III (*nth* gene product), which removes oxidized pyrimidine bases, was shown to be important in establishing long-term colonization in the host [50]. The *H. pylori* MutY glycosylase is functional in removing adenine from 8-oxoG:A mispair, and the loss of MutY leads to attenuation of the colonization ability [51-53].

To repair DNA double strand breaks and blocked replication forks, *H. pylori* is equipped with an efficient system of DNA recombinational repair, which is the main focus of this review (See section 4).

2.2 *H. pylori* response to DNA damage

Many bacteria encode a genetic program for a coordinated response to DNA damage called the SOS response. The best known *E. coli* SOS response is triggered when RecA binds ssDNA, activating its co-protease activity towards LexA, a transcriptional repressor [54]. Cleavage of LexA results in transcriptional induction of genes involved in DNA repair, low-fidelity polymerases, and cell cycle control. However, the *H. pylori* genome contains neither a gene for LexA homolog nor the genes for low-fidelity polymerases, and an SOS response pathway seems to be absent in *H. pylori* [12, 13].

To define pathways for an *H. pylori* DNA damage response, Dorer et al. [55] used cDNA based microarrays to measure transcriptional changes in cells undergoing DNA damage. In both ciprofloxacin treated cells and the ΔaddA (a major DNA recombination gene, see section 4.4 below) mutant cells, the same set of genes were induced which include genes required for energy metabolism, membrane proteins, fatty acid biosynthesis, cell division, and some translation factors, although the contribution of these genes to survival in the face
of DNA damage is not understood. No DNA repair genes, a hallmark of the SOS response, were induced in either the antibiotic-treated cells or the recombination gene deleted strain. Surprisingly, several genes involved in natural competence for DNA transformation (comT4SS components comB3, comB4 and comB9) were induced significantly. Indeed, natural transformation frequency was shown to be increased under DNA damage conditions. Another DNA damage-induced gene was a lysozyme-encoding gene. Experimental evidence was provided that a DNA damage-induced lysozyme may target susceptible cells in culture and provide a source of DNA for uptake [55]. Taken together, DNA damage (mainly DSBs in their experiments) induces the capacity for taking up DNA segments from the neighboring cells of the same strain (homologous) or co-colonizing strain (homeologous) that may be used for recombinational DNA repair.

3. Mechanisms of DNA recombinational repair known in model bacteria

Although the bulk of DNA damage affects one strand of a duplex DNA segment, occasionally both DNA strands opposite each other are damaged; the latter situation necessitates recombinational repair using an intact homologous DNA sequence [56, 57]. DNA double-strand breaks (DSB) occur as a result of a variety of physical or chemical insults that modify the DNA (e.g. DNA strands cross-links). In addition, if a replication fork meets damaged bases that cannot be replicated, the fork can collapse leading to a DSB. In E. coli, 20-50% of replication forks require recombinational repair to overcome damage [58].

Homologous recombinational repair requires a large number of proteins that act at various stages of the process [56]. The first stage, pre-synapsis, is the generation of 3’ single-stranded (ss) DNA ends that can then be used for annealing with the homologous sequence on the sister chromosome. In E. coli, the two types of two-strand lesions (double strand end and daughter strand gap) are repaired by two separate pathways, RecBCD and RecFOR, respectively [57]. The second and most crucial step in DNA recombination is the introduction of the 3’ DNA overhang into the homologous duplex of the sister chromosome, termed synapsis. This is performed by RecA in bacteria. RecA binds to ssDNA in an ATP-dependent manner, and RecA-bound ssDNA (in a right-handed helix structure) can invade homologous duplex DNA and mediate strand annealing, accompanied by extrusion of the other strand that can pair with the remaining 5’ overhang of the DSB (called D-loop formation).

During DNA recombination, the single stranded DNA (ssDNA) is always coated (protected) by ssDNA-binding protein (SSB), which has a higher affinity to ssDNA than RecA. RecA needs to be loaded (during pre-synapsis stage), either by RecBCD or RecFOR, onto the generated ssDNA that is coated with SSB. During the third step in recombination, post-synapsis, RecA-promoted strand transfer produces a four-stranded exchange, or Holliday junctions (HJ) [59]. The RecG and RuvAB helicases are two pathways that process the branch migration of HJ. Finally, RuvC resolves HJ in an orientation determined by RuvB, and the remaining nicks are sealed by DNA ligase.

Several other genes (recJ, recQ, recN) are also required for recombination, although their functions are unclear [60, 61]. Single stranded exonuclease RecJ and RecQ helicase are sometimes needed to enlarge the gap for RecFOR to act [62]. RecN, RecO, and RecF were found to be localized to distinct foci on the DNA in Bacillus subtilis cells after induction of DSBs [63]. These proteins form active repair centers at DSBs and recruit RecA, initiating
homologous recombination. RecN was shown to play an important role in repairing DSBs, probably coordinating alignment of the broken segments with intact duplexes to facilitate recombination [64].

4. DNA recombinational repair factors in H. pylori

While some genes that are predicted to be involved in DNA recombinational repair, including recA, recG, recJ, recR, recN, and ruvABC, were annotated from the published H. pylori genome sequences, many genes coding for the components that are involved in the pre-synapsis stage, such as RecBCD, RecF, RecO, and RecQ, were missing. Considering that H. pylori is highly genetic diverse with a high recombination frequency, this has been a big puzzle over the past decade. Recent studies revealed the existence of both pathways, AddAB (RecBCD-like) and RecRO, for initiation of DNA recombinational repair in H. pylori. In the following sections we will summarize the current understanding of DNA recombinational repair in H. pylori by reviewing the literature accumulated in recent years.

4.1 The central recombination protein RecA

The RecA protein is a central component of the homologous recombination machinery and of the SOS system in most bacteria. The relatively small RecA protein contains many functional domains including different DNA-binding sites and an ATP-binding site. E. coli RecA has also coprotease activities for the LexA repressor and other factors involved in SOS response. However, H. pylori genome does not contain a LexA homolog and an SOS response pathway is likewise absent in H. pylori. Thus, a coprotease activity may be dispensable for the H. pylori RecA protein. Nevertheless, RecA is required for DNA damage response observed in H. pylori, although the underlying mechanism is unclear [55]. Before the genome era, the roles of H. pylori RecA in DNA recombination and repair have been studied genetically [65, 66]. H. pylori RecA (37.6 kDa protein) is highly similar to known bacterial RecA proteins. The H. pylori recA mutants were severely impaired in their ability to survive treatment with DNA damaging agents such as UV light, methyl methanesulfonate, ciprofloxacin, and metronidazole. H. pylori RecA also played a role in survival at low pH in a mechanism distinct from that mediated by urease [66]. Disruption of recA in H. pylori abolished general homologous recombination [65]. Interestingly, H. pylori RecA protein is subject to posttranslational modifications that result in a slight shift in its electrophoretic mobility [67]. One putative mechanism for RecA modification is protein glycosylation. H. pylori RecA protein was shown to be membrane associated, but this association is not dependent on the posttranslational modification. The RecA modification is required for full activity of DNA repair [67].

In recent years, the phenotypes of H. pylori recA mutants have been further characterized in comparison with other mutants. Among the mutants of DNA recombination and repair genes, recA mutants displayed the most severe phenotypes. For example, recA mutants were much more sensitive to UV or Gamma radiation than the recB or recO single mutants, and were similar to the recBO double mutant [68-70]. The recA mutants completely lost the ability to undergo natural transformation [68-70]. The intra-genomic recombination frequency of the recA mutant was also much lower than that of the recR or recB single mutants [68, 71]. Finally, the recA mutants completely lost the ability to colonize mouse stomachs [69]. In competition experiments (mixed infection with wild type and mutant
4.2 Post-synapsis proteins RuvABC and RecG

In addition to the synapsis protein RecA, the genes for post-synapsis proteins (RuvABC and RecG) are also well conserved among bacteria [72]. Genes for RuvABC proteins are present in *H. pylori*, thus *H. pylori* seems to be able to restore Holliday Junctions in a similar way to *E. coli*. RuvC is a Holliday junction endonuclease that resolves recombinant joints into nicked duplex products. A *ruvC* mutant of *H. pylori* was more sensitive (compared to the wild type) to oxidative stress and other DNA damaging agents including UV light, mitomycin C, levofloxacin and metronidazole [73]. As Macrophage cells are known to produce an oxidative burst to kill bacterial pathogens, the survival of *H. pylori* *ruvC* mutant within macrophages was shown to be 100-fold lower than that of the wild type strain [73]. Furthermore, mouse model experiments revealed that the 50% infective dose of the *ruvC* mutant was approximately 100-fold higher than that of the wild-type strain. Although the *ruvC* mutant was able to establish colonization at early time points, infection was spontaneously cleared from the murine gastric mucosa over long periods (36 to 67 days) [73]. This was the first experimental evidence that DNA recombination processes are important for establishing and maintaining long-term *H. pylori* infection. Further studies suggested that RuvC function and, by inference, recombination facilitate bacterial immune evasion by altering the adaptive immune response [74], although the underlying mechanisms remain obscure.

RuvAB proteins are involved in the branch migration of Holliday junctions. The annotated *H. pylori* RuvB (HP1059) showed extensive homology (52% sequence identity) to *E. coli* RuvB, particularly within the helicase domains. However, unlike in *E. coli*, *ruvA*, *ruvB*, and *ruvC* are located in separate regions of the *H. pylori* chromosome, which may predict possible functional differences. In contrast to *E. coli* *ruvB* mutants, which have moderate susceptibility to DNA damage, the *H. pylori* *ruvB* mutant has intense susceptibility to UV, similar to that of a *recA* mutant [75]. Similarly, the *H. pylori* *ruvB* mutant has a significantly diminished MIC (minimal inhibitory concentration) for ciprofloxacin, an agent that blocks DNA replication fork progression, to the same extent as the *recA* mutant. In agreement with these repair phenotypes, the *ruvB* mutant has almost completely lost the ability of natural transformation of exogenous DNA (frequency of <10^{-8}), similar to the *recA* mutant. In an assay measuring the intra-genomic recombination (deletion frequency between direct repeats), the *ruvB* mutants displayed significantly (four- to sevenfold) lower deletion frequencies than the background level. All four phenotypes of the *ruvB* mutant suggested that *H. pylori* RuvAB is the predominant pathway for branch migration in DNA recombinational repair [75].

In *E. coli*, an alternative pathway processing branch migration of Holliday junctions is the RecG helicase. In marked contrast to *E. coli*, *H. pylori* *recG* mutants do not have defective DNA repair, as measured by UV-light sensitivity and ciprofloxacin susceptibility [76]. Furthermore, *H. pylori* *recG* mutants have increased frequencies of intergenomic recombination and deletion, suggesting that branch migration and Holliday junction resolution are more efficient in the absence of RecG function [75, 76]. Thus, the effect of *H. pylori* RecG seems to be opposite to that of the RuvAB helicase. In the RuvABC pathway, the RuvC endonuclease nicks DNA, catalyzing Holliday junction resolution into double-stranded DNA. Although the resolvase in the RecG pathway has not been completely
elucidated, it has been hypothesized that RusA may serve this function in *E. coli* [77]. By introducing *E. coli* rusA into *H. pylori* ruvB mutants, the wild-type phenotypes for DNA repair and recombination were restored [75]. A hypothesis was proposed that RecG competes with RuvABC for DNA substrates but initiates an incomplete repair pathway (due to the absence of the RecG resolvase RusA) in *H. pylori*, interfering with the RuvABC repair pathway [75].

4.3 *H. pylori* RecN

Bacterial RecN is related to the SMC (structure maintenance of chromosome) family of proteins in eukaryotes, which are key players in a variety of chromosome dynamics, from chromosome condensation and cohesion to transcriptional repression and DNA repair [78]. SMC family proteins have a structural characteristic of an extensive coiled-coil domain located between globular domains at the N- and C-termini that bring together Walker A and B motifs associated with ATP-binding [79]. *E. coli* RecN is strongly induced during the SOS response and was shown to be involved in RecA-mediated recombinational repair of DSBs [64]. In *Bacillus subtilis*, RecN was shown to be recruited to DSBs at an early time point during repair [63, 80, 81]. In vitro, RecN was shown to bind and protect 3’ ssDNA ends in the presence of ATP [82].

In the published *H. pylori* genome sequence [12], HP1393 was annotated as a recN gene homolog. The *H. pylori* recN mutant is much more sensitive to mitomycin C, an agent that predominantly causes DNA DSBs, indicating RecN plays an important role in DSB repair in *H. pylori* [83]. In normal laboratory growth conditions, an *H. pylori* recN mutant does not show a growth defect, but its survival is greatly reduced under oxidative stress which resembles the *in vivo* stress condition. While very little fragmented DNA was observed in either wild type or recN mutant strain when cells were cultured under normal microaerobic conditions; after oxidative stress treatment the recN mutant cells had a significantly higher proportion of the DNA as fragmented DNA than did the wild type [83]. Similar roles of RecN in protection against oxidative damage have been demonstrated in *Neisseria gonorrhoeae* [84, 85]. In addition, the *H. pylori* recN mutant is much more sensitive to low pH than the wild type strain, suggesting that RecN is also involved in repair of acid-induced DNA damage [83]. This could be relevant to its physiological condition, as *H. pylori* appears to colonize an acidic niche on the gastric surface [41].

As mentioned in the sections above, loss of *H. pylori* RecA, RuvB or RuvC functions results in a great decrease of DNA recombination frequency. Similarly, the *H. pylori* recN mutant has a significant decrease of DNA recombination frequency, suggesting that RecN is a critical factor in DNA recombinational repair [83]. In contrast, loss of UvrD or MutS2 in *H. pylori* resulted in an increase of DNA recombination frequency [46, 48]. Suppression of DNA recombination by UvrD or MutS2, and facilitation of DNA recombination by RecN, may play a role in coordinating DNA repair pathways. Recombinational repair could be mutagenic due to homeologous recombination or cause rearrangement due to recombination with direct repeat sequences. In addition, recombinational repair systems are much more complex and require more energy to operate, compared to nucleotide excision repair (NER) and base excision repair (BER) systems. Thus UvrD, as a component of NER, and MutS2 as a likely component of a BER (8-oxoG glycosylase) system [49], both suppress DNA recombination. Both NER and BER systems would be expected to continuously function in low stress conditions. Under a severe stress condition when large amounts of
DSBs are formed, RecN perhaps recognizes DSBs and recruits proteins required for initiation of DNA recombination. The role of *H. pylori* RecN in *vivo* has been demonstrated, as the recN-disrupted *H. pylori* cells are less able to colonize hosts than wild type cells [83]. However, the mouse colonization phenotype of the recN strain seems to be less severe than those observed for the recA or ruvC mutants. In contrast to RecA or RuvC which are major components of DNA recombination machinery, RecN is a protein specific for repairing DSBs by linking DSB recognition and DNA recombination initiation. It was proposed that the attenuated ability to colonize mouse stomachs by *recN* cells was mainly due to the strain’s failure to repair DSBs through a DNA recombinational repair pathway.

4.4 AddAB helicase-nuclease

DNA helicases play key roles in many cellular processes by promoting unwinding of the DNA double helix [86]. Bacterial genomes encode a set of helicases of the DExx family that fulfill several, sometimes overlapping functions. Based on the sequence homology, bacterial RecB, UvrD, Rep, and PcrA were classified as superfamily I (SF1) helicases [86-88]. In the well-studied *E. coli*, RecBCD form a multi-functional enzyme complex that processes DNA ends resulting from a double-strand break. RecBCD is a bipolar helicase that splits the duplex into its component strands and digests them until encountering a recombinational hotspot (Chi site). The nuclease activity is then attenuated and RecBCD loads RecA onto the 3′ tail of the DNA [89]. Another bacterial enzyme complex AddAB, extensively studied in *Bacillus subtilis*, has both nuclease and helicase activities similar to those of RecBCD enzyme [90, 91].

The genes for RecBCD or AddAB were missing in the published *H. pylori* genome [12, 13]. However, HP1553 from strain 26695 was annotated as a gene encoding a putative helicase [12], and the corresponding gene from strain J99 was annotated as *pcrA* [13]. Amino acid sequence alignment of HP1553 to *E. coli* RecB (or to *B. subtilis* AddA) revealed 24% identity (to both heterologous systems) at the N-terminal half (helicase domain), and no significant homology at the C-terminal half (including nuclease domain). Thus, HP1553 could be a RecB (or AddA)-like helicase [69, 92]. Furthermore, by using the highly conserved AddB nuclease motif “GRIDRID” in BLAST search, HP1089 was identified as the putative AddB homolog [69]. Now it is accepted that HP1553 and HP1089 are termed *addA* and *addB* respectively in *H. pylori* with a reminder that previous *recB* [20, 68, 70, 92] was the equivalent of *addA* [69, 71, 93]. Both genes *addA* and *addB* are present in 56 *H. pylori* clinical isolates from around the world [94]; thus they are considered core genes that are not strain variable.

The biochemical activities of *H. pylori* AddAB helicase-nuclease have been demonstrated [69]. Cytosolic extracts from wild-type *H. pylori* showed detectable ATP-dependent nuclease activity with ds DNA substrate, while the *addA* and *addB* mutants lack this activity. Cloned *H. pylori addA* and *addB* genes express ATP-dependent exonuclease in *E. coli* cells. These genes also conferred ATP-dependent DNA unwinding (helicase) activity to an *E. coli recBCD* deletion mutant, indicating that they are the structural genes for this enzyme [69]. The roles of individual (helicase, exonuclease) activity of the AddA and AddB in DNA repair, recombination, and mouse infection have been further studied by site-directed mutagenesis approach [93].

H. pylori addA and *addB* mutant strains showed heightened sensitivity to mitomycin C and the DNA gyrase inhibitor ciprofloxacin, both of which lead to DNA ds breaks [69, 92].
level of sensitivity was similar to that seen for a recA mutant, but more severe than for the recN mutant. It is thus concluded that AddAB plays a major role in the repair of DNA ds breaks [69, 92]. On the other hand, the addA and addB mutants were markedly less sensitive to UV irradiation than a recA mutant, suggesting that AddAB does not play a major role in repair of UV damage in H. pylori [69]. AddA was shown to be important for H. pylori protection against oxidative stress-induced damage, as the addA mutant cells were significantly more sensitive to oxidative stress and contained a large amount of fragmented DNA [92]. Furthermore, loss of AddA resulted in reduced frequencies of apparent gene conversion between homologous genes encoding outer membrane proteins (babA to babB) [69]. Finally, it was shown that the addA and addB mutant strains display a significantly attenuated ability to colonize mouse stomachs, in both competition experiments and during single-strain infections [69, 92].

While addA and addB are adjacent in the chromosome in most bacteria, including other epsilon Proteobacteria, this is not the case in H. pylori. However, the phenotypes of H. pylori addA and addB mutants are indistinguishable. Thus, it was proposed [69] that the AddA and AddB act together in a complex, as do the RecBCD polypeptides and AddAB polypeptides of other bacteria. If so, the control of the unlinked H. pylori addA and addB genes to maintain the proper stoichiometry of the two polypeptides remains an interesting question.

Regarding the role of H. pylori AddA in DNA recombination during natural transformation, conflicting results were reported from different studies. The addA (note: it was named recB in certain references) mutant showed enhanced [68, 70], decreased [20, 71, 92], or no change [27, 69] in transformation frequency. Indeed, a high degree of variability (>100-fold) in transformation frequency in H. pylori was observed between different strains and different experiments. The use of different assay systems may partly explain the discrepancy in transformation results. For example, the total genomic DNA from antibiotic-resistant strain was used for the transformation assay in certain studies, while in others the defined linear DNA fragments of small size [92]. Use of the transformation frequency as an indicator of DNA recombination frequency is based on the assumption that the wild type H. pylori and its isogenic rec strains are equally competent for DNA uptake. However, it is now known that this assumption is not valid because DNA damage triggers genetic exchange in H. pylori [55]. H. pylori addA mutant cells suffered more DNA damage [92], and have an enhanced competence for DNA uptake [55]. Thus, the accumulation of unrepaired DNA damage and subsequent poor growth, as well as unknown strain differences, could be the main cause of the high degree of variability in H. pylori transformation frequency [27].

4.5 H. pylori RecRO pathway

RecFOR is a highly conserved DNA recombination pathway in bacteria, and is mainly used for ssDNA gap repair [72]. In the published H. pylori genome sequences, only the recR gene was annotated [12, 13]. Although RecF historically served as a reference for RecFOR pathway, it is absent from genomes of many bacteria including H. pylori [72]. By bioinformatics analysis, Marsin et al [68] identified HP0951 as a novel RecO orthologue, although its sequence identity with the E. coli protein is lower than 15%. Recent studies in E. coli indicated that RecOR in the absence of RecF can perform recombination by loading RecA [95, 96]. Whereas the RecO protein can displace ssDNA-binding protein (SSB) and
bind to ssDNA, RecR is the key component for loading RecA onto ssDNA [95, 97]. Likely, the RecRO pathway (with no RecF) is present in *H. pylori*. The recR and recO mutants showed marked sensitivity to DNA damaging agents metronidazole and UV light, indicating roles of RecR and RecO in DNA repair. Unlike the *addA* (*recB*) mutant, the *recR* and *recO* mutants did not show significant sensitivity to ionizing radiation (IR) and to mitomycin C [68, 71], suggesting that RecRO pathway is not responsible for repairing DNA damage induced by these agents, most likely double strand breaks. This is in contrast to *E. coli* where the RecFOR pathway sometimes substitutes for the RecBCD pathway and in *Deinococcus radiodurance* where the RecFOR pathway plays a major role in double strand break repair [98, 99]. On the other hand, *H. pylori* *recR* and *recO* mutants were shown to be much more sensitive to oxidative stress and to acid stress than the wild type strain [71], indicating that *H. pylori* RecRO pathway is involved in repairing DNA damage induced by these stress conditions. The *addA* *recO* double mutant (deficient in both AddAB and RecRO pathways) was significantly more sensitive to atmospheric oxygen than the *recO* single mutant, indicating that both RecRO and AddAB pathways are important for survival of oxidative damage. Similar roles of the RecBCD and the RecFOR pathways for survival of oxidative damage were also observed in *E. coli* [57, 100] and in *Neisseria gonorrhoeae* [84]. In those bacteria, however, the RecBCD appeared to be the predominant (over the RecFOR) repair pathway for oxidative damage. Our results suggest that the two pathways in *H. pylori* play similarly important roles in repairing oxidative stress-derived DNA damage [71]. In accordance with the sensitivity to oxidative and acid stress in vitro, *H. pylori* *recR* and *recO* mutants were shown to be less able to colonize mouse stomachs [71]. Furthermore, the mouse colonization ability of the *addA* *recO* double mutant was significantly lower than that of the *addA* or *recO* single mutant. Therefore, both AddAB- and RecRO-mediated DNA recombinational repair in *H. pylori* play an important role in bacterial survival and persistent colonization in the host.

Although differing results regarding the effect of *addA* gene on transformation frequency were reported by different research groups, it was agreed that the RecRO-pathway is not involved in recombination of exogenous DNA into the *H. pylori* genome in the process of transformation [68, 71]. The RecRO pathway is known to have a major role in intragenomic recombination at repeat sequences [101]. Using an assay to assess the deletion frequency resulting from recombination on direct repeat sequences (358 bp long), Marsin et al [68] showed that the *recR* and *recO* mutants exhibited a statistically significantly lower deletion frequency than the wild type strain, suggesting a role of RecRO in intragenomic recombination. Recently we adopted a similar assay using DNA constructs (deletion cassettes) that contain identical repeat sequences of different length (IDS100 and IDS350) [71]. The results indicated that the intra-genomic recombination of 100 bp-long direct repeat sequences in *H. pylori* is partially dependent on RecR and RecA, yet a large portion of the recombination event is RecA-independent. This is basically in agreement (with small variance) with the results of Aras et al [35] who reported that the repeat sequences of 100 bp or shorter recombined through a RecA-independent pathway. For the deletion cassette containing repeat sequences of 350 bp in length, inactivation of *recR* or *recA* resulted in a significant 4-fold or 35-fold decrease respectively in deletion frequency, indicating that RecR plays a significant role in recombination of IDS350, while this recombination was highly dependent on RecA.
5. Concluding remarks and perspectives

Severe Helicobacter pylori-mediated gastric diseases are associated with the bacterium’s persistence in the host and its adaptability to host differences, which in turn is associated with its remarkable genetic variability. DNA recombination is an extraordinarily frequent event in H. pylori, and this manifests itself into a bacterium with unusual flexibility in stress-combating enzymes, repair mechanisms, and other adaptability characteristics. Nearly every H. pylori recombination-related gene studied thus far by a gene directed mutant analysis approach has documented they are individually important in stomach colonization ability; this underscores the importance of these recombination repair processes in bacterial survival in the host. It is well recognized that homologous DNA recombination is a special system in bacteria for repairing stalled replication forks and double strand breaks, while generating genetic diversity as an advantageous byproduct [102]. H. pylori may be an especially fruitful organism in which to learn the ultimate boundaries in roles of recombination repair enzymes, as H. pylori is subject to intense and prolonged host mediated stress and it displays an enormous genetic diversity.

Substantial progress has been made recently in unraveling the complex systems of DNA recombinational repair in H. pylori. As expected, whole genome sequencing has been a powerful tool to aid in identifying recombination-related proteins in H. pylori. For example, recA, recR, recN, and ruvABC were identified and confirmed to play important roles in H. pylori as could be expected from results for other bacteria. Some recombination-related proteins (e.g. MutS2, RecG), however, play unique roles in H. pylori. Most of the genes for the major components of the two pre-synapsis pathways (RecBCD and RecFOR) were not annotated from H. pylori genome sequences, which drove researchers’ interest to search for additional novel systems required for H. pylori DNA recombinational repair. Recent studies revealed the existence of both pathways, AddAB and RecRO, in H. pylori. Although they display a limited level of sequence homology to the known recombination enzymes, both AddAB and RecRO were shown to play important roles in H. pylori DNA recombinational repair, conferring resistance to oxidative and acid stress.

The major components of DNA recombinational repair machinery in H. pylori are listed in Table 1. H. pylori RecN protein may recognize DNA double strand breaks and recruits AddAB helicase-nuclease complex for further processing. While not being involved in repair of DNA double strand breaks, H. pylori RecRO proteins play a major role in intra-genomic recombination at repeat sequences. Both pre-synapsis pathways (AddAB and RecRO) require RecA for catalyzing DNA strand exchange (synapsis) and H. pylori RuvABC is the predominant pathway for DNA branch migration and Holliday Junction resolution (post-synapsis). Although the major functions of these components are similar to those observed in model bacteria, some novel attributes of these components have been discovered, which may be related to the highly-specific lifestyle of H. pylori. Additional new components that work synergistically with these pathways could be found in this unique bacterium via future biochemical and genetic approaches.

6. Acknowledgements

The work on H. pylori DNA repair in our laboratory was supported by NIH grant R21AI076569 and by the University of Georgia Foundation.
<table>
<thead>
<tr>
<th>Gene</th>
<th>HP # (a)</th>
<th>Activity / function</th>
<th>Main phenotypes of mutant (b)</th>
<th>reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>recN</td>
<td>1393</td>
<td>Initiates DSB-induced recombination.</td>
<td>Sensitive to DSB damage; Sensitive to oxidative stress; Attenuated mouse colonization.</td>
<td>[83]</td>
</tr>
<tr>
<td>recJ</td>
<td>0348</td>
<td>5'-3' ssDNA exonuclease.</td>
<td>Not studied experimentally.</td>
<td></td>
</tr>
<tr>
<td>addA</td>
<td>1553</td>
<td>AddAB Helicase-nuclease; Initiates DSB-induced recombination.</td>
<td>Sensitive to DSB damage; Sensitive to oxidative stress; Attenuated mouse colonization.</td>
<td>[69, 92]</td>
</tr>
<tr>
<td>addB</td>
<td>1089</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>recR</td>
<td>0925</td>
<td>RecRO recombination pathway; Initiates ssDNA gap repair.</td>
<td>Not sensitive to DSB damage; Sensitive to oxidative stress; Attenuated mouse colonization.</td>
<td>[68, 71]</td>
</tr>
<tr>
<td>recO</td>
<td>0951</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>recA</td>
<td>0153</td>
<td>DNA recombinase; Catalyzes DNA pairing and strand exchange.</td>
<td>Sensitive to DNA damaging agents; Decreased recombination frequency; Defective mouse colonization.</td>
<td>[65, 66, 69]</td>
</tr>
<tr>
<td>recG</td>
<td>1523</td>
<td>Holiday junction helicase.</td>
<td>Not sensitive to DNA damaging agents; Increased recombination frequency.</td>
<td>[76]</td>
</tr>
<tr>
<td>ruvA</td>
<td>0883</td>
<td>Holliday junction recognition.</td>
<td>Not studied experimentally.</td>
<td></td>
</tr>
<tr>
<td>ruvB</td>
<td>1059</td>
<td>Holiday junction helicase.</td>
<td>Sensitive to DNA damaging agents; Decreased recombination frequency.</td>
<td>[75]</td>
</tr>
<tr>
<td>ruvC</td>
<td>0877</td>
<td>Holliday junction resolvase.</td>
<td>Sensitive to DNA damaging agents; Decreased recombination frequency; Attenuated mouse colonization.</td>
<td>[73]</td>
</tr>
</tbody>
</table>

(a) HP# refers to the gene number in the genome sequence of strain 26695 [12].
(b) DSB (double strand breaks) damage refers to those damages caused e.g. by ionizing radiation, mitomycin C, or ciprofloxacin.

Table 1. *H. pylori* genes involved in DNA recombinational repair

7. References

The book consists of 31 chapters, divided into six parts. Each chapter is written by one or several experts in the corresponding area. The scope of the book varies from the DNA damage response and DNA repair mechanisms to evolutionary aspects of DNA repair, providing a snapshot of current understanding of the DNA repair processes. A collection of articles presented by active and laboratory-based investigators provides a clear understanding of the recent advances in the field of DNA repair.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:
