Intelligent Approach to MPPT Control Strategy for Variable-Speed Wind Turbine Generation System

Whei-Min Lin and Chih-Ming Hong
Department of Electrical Engineering,
National Sun Yat-Sen University
Kaohsiung 80424
Taiwan, R.O.C.

1. Introduction

Recently, wind generation systems are attracting great attentions as clean and safe renewable power sources. Wind generation can be operated by constant speed and variable speed operations using power electronic converters. Variable speed generation is attractive because of its characteristic to achieve maximum efficiency at all wind velocities (Pena et al. 2000; Senjyu et al. 2006; Sakamoto et al. 2006; Ramtharan et al. 2007; Fernandez et al. 2008), the improvement in energy production, and the reduction of the flicker problem. In the variable-speed generation system, the wind turbine can be operated at the maximum power operating point for various wind speeds by adjusting the shaft speed. These characteristics are advantages of variable-speed wind energy conversion systems (WECS). In order to achieve the maximum power control, some control schemes have been studied.

A variable speed wind power generation system (WPGS) needs a power electronic converter and inverter, to convert variable-frequency, variable-voltage power into constant-frequency constant-voltage, to regulate the output power of the WPGS. Traditionally a gearbox is used to couple a low speed wind turbine rotor with a high speed generator in a WPGS. Great efforts have been placed on the use of a low speed direct-drive generator to eliminate the gearbox. Many of the generators of research interest and for practical use in wind generation are induction machines with wound-rotor or cage-type rotor (Simoes et al. 1997; Li et al. 2005; Karrari et al. 2005; Wang & Chang 2004). Recently, the interest in PM synchronous generators is increasing. High-performance variable-speed generation including high efficiency and high controllability is expected by using a permanent magnet synchronous (PMSG) for a wind generation system.

Previous research has focused on three types of maximum wind power extraction methods, namely tip speed ratio (TSR) control, power signal feedback (PSF) control and hill-climb searching (HCS) control. TSR control regulates the wind turbine rotor speed to maintain an optimal TSR. PSF control requires the knowledge of the wind turbine’s maximum power curve, and tracks this curve through its control mechanisms. Among previously developed wind turbine maximum power point tracking (MPPT) strategies, the TSR direction control method is limited by the difficulty in wind speed and turbine speed measurements.
(Thiringer & Linders 1993; Chedid et al. 1999; Tanaka & Toumiya 1997; Morimoto et al. 2005; Koutroulis & Kalaitzakis 2006). Many MPPT strategies were then proposed to eliminate the measurements by making use of the wind turbine maximum power curve, but the knowledge of the turbine’s characteristics is required. HCS control has been proposed to continuously search for the peak output power of the wind turbine. In comparison, the HCS MPPT is popular due to its simplicity and independence of system characteristics. In this paper, a Wilcoxon radial basis function network (WRBFN)-based with HCS MPPT strategy is proposed for PMSG wind turbine generator (WTG). The proposed control structure, WRBFN with modified particle swarm optimization (MPSO) algorithm is forces the system to reach its equilibriums quickly where the turbine inertia effect is minimized. HCS can be fast and effective in spite of the variations in wind speeds and the presence of turbine inertia.

Intelligent control approaches such as neural network and fuzzy system do not require mathematical models and have the ability to approximate nonlinear systems. Therefore, there were many researchers using intelligent control approaches to represent complex plants and construct advanced controllers. Moreover, the locally tuned and overlapped receptive field is a well-known structure that has been studied in regions of cerebral cortex, visual cortex, and so on (Jang & Sun 1997). Based on the biological receptive fields, the RBFN that employs local receptive fields to perform function mappings was proposed in (Jang & Sun 1993). Furthermore, the RBFN has a similar feature to the fuzzy system. First, the output value is calculated using the weighted sum method. Second, the number of nodes in the hidden layer of the RBFN is the same as the number of if-then rules in the fuzzy system. Finally, the receptive field functions of the RBFN are similar to the membership functions of the premise part in the fuzzy system. Therefore, the RBFN is very useful to be applied to control the dynamic systems (Seshagiri & Khail 2000).

2. Analysis of wind generation system

2.1 Wind turbine characteristics and modeling

In order to capture the maximal wind energy, it is necessary to install the power electronic devices between the WTG and the grid where the frequency is constant. The input of a wind turbine is the wind and the output is the mechanical power turning the generator rotor (Li et al. 2005; Karrari et al. 2005; Wang & Chang 2004). For a variable speed wind turbine, the output mechanical power available from a wind turbine could be expressed as

\[P_m = \frac{1}{2} \rho AC_p(\lambda, \beta)V_o^3 \] \hspace{1cm} (1)

where \(\rho \) and \(A \) are air density and the area swept by blades, respectively. \(V_o \) is the wind velocity (\(m/s \)), and \(C_p \) is called the power coefficient, and is given as a nonlinear function of the tip speed ratio (TSR) \(\lambda \) defined by

\[\lambda = \frac{\omega r}{V_o} \] \hspace{1cm} (2)

where \(r \) is wind turbine blade tip radius, and \(\omega \) is the turbine speed. \(C_p \) is the function of the \(\lambda \) and the blade pitch angle \(\beta \), general defined as follows:
\[
C_p = 0.73 \frac{151}{\lambda_i} - 0.58\beta - 0.002\beta^{2.14} - 13.2\left(\lambda_i\right)^{-18.4}
\]

\[
\lambda_i = \frac{1}{\lambda - 0.02\beta + \beta^3 + 1}
\]

By using (3), the typical \(C_p \) versus \(\lambda \) curve is shown in Fig. 1. In a wind turbine, there is an optimum value of TSR \(\lambda_{opt} \) that leads to maximum power coefficient \(C_{p_{max}} \). When TSR in (2) is adjusted to its optimum value \(\lambda_{opt} = 6.9 \) with the power coefficient reaching \(C_{p_{max}} = 0.4412 \), the control objective of the maximum power extraction is achieved.

Fig. 1. Typical \(C_p \) versus \(\lambda \) curve

2.2 PMSG

The wind generator is a three-phase PMSG, where the mechanical torque \(T_m \) and electrical torque \(T_e \) can be expressed as

\[
T_m = \frac{P_m}{\omega_r}
\]

\[
T_e = \frac{P_e}{\omega_r} = \frac{2}{P} \frac{P_e}{\omega_r}
\]

In general, the mechanical dynamic equation of a PMSG is given by

\[
J \frac{d\omega_r}{dt} = T_m - (P / 2)T_e
\]

where \(\omega_r \) and \(P \) are electrical angular frequency, and the number of poles. \(J \) is the inertia moment of WTG.
2.3 Wind turbine emulation

The emulation of the wind turbine is implemented by a dc motor drive with torque control. In the prototype, a 1.5kW, 1980rpm dc motor was used. A computer program reads the wind input file obtained with various test conditions, and calculates the wind turbine torque by taking into account wind velocity, turbine rotational speed, and the wind turbine power coefficient curve. The control algorithms for turbine emulation are implemented in a control board dSPACE DS1102. This board is a commercial system designed for rapid prototyping of real control algorithms; it is based on the Texas Instruments TMS320C32 floating-point DSP. The DS1102 board is hosted by a personal computer.

3. HCS control method

3.1 System configuration

Fig. 2 presents the block diagram of the WT generation system in our research, where a PMSG is driven by a WT to feed the extracted power from wind resources to the grid through a single-phase inverter. A variable speed WPGS needs a power electronic converter and inverter, to convert variable-frequency, variable-voltage AC power from a generator to DC and then into constant-frequency constant-voltage power. In the dc-link of the inverter, a blocking diode D_B is used to improve the power delivering capability as well as to guarantee that the dc-link voltage transfers to the output voltage. An inverter controller is designed to deal with two aspects, the MPPT control for power maximization and the current control for output PWM to inverter. The dc-link voltage and current, V_{dc} and I_{dc} are sampled to provide the power ($P_{dc} = V_{dc} \cdot I_{dc}$) input to the controller, and V_{dc}^* reference signal is updated in real time using an HCS method so as to lead the system to its optimal operation point. On the other hand, a WRBFN controller is designed to force V_{dc} to follow V_{dc}^* by adjusting the load current reference for the inverter current controller.
3.2 Optimal DC-link voltage \((V_{dc})\) search

From the \(C_{p} - \lambda\) characteristics, the turbine mechanical power \(P_m\) can be shown as a function of \(V_{dc}\), and an optimal \(V_{dc}\) exists for the maximum \(P_m\) output, provided that a PMSG is employed in the generation system. Fig. 3 shows a group of \(P_m - V_{dc}\) curves and the corresponding maximum power curve formed with various optimal operating points, where wind speeds \(u1 < u2 < u3 < u4\). In order to extract maximum power from wind, the optimal \(V_{dc}\) is searched in real time using the HCS method. With HCS, if the previous increment of \(V_{dc}\) is followed by an increase of \(P_m\), then the search of \(V_{dc}\) continues in the same direction; otherwise, the search reverses its direction. An example can be seen in Fig. 3, where the wind change from \(u3 \rightarrow u4 \rightarrow u2\) with the search of \(V_{dc}\) from \(A \rightarrow B \rightarrow C \rightarrow D \rightarrow E\). The increment of \(P_m\) is approximated by that of \(P_{dc}\), and the search is executed at dynamic equilibrium operation points where \(P_{dc}\) is approximately equal to \(P_m\) and the effect of turbine inertia \(J\) can be minimized. In dynamic states, \(V_{dc}\) will be held and the WRBFN will adjust the load current in real time to drive the system to its equilibrium point as soon as possible. Fig. 3 illustrates the searching process (ABCDE) for the maximum power points when the wind speed varies.

![Fig. 3. Principle of HCS control method.](image)

4. The proposed intelligent MPPT control algorithm

4.1 Wilcoxon radial basis function network

The linear Wilcoxon regressor is quite robust against outliers (Hogg et al. 2005), which motivates the design of wilcoxon neural networks. A three-layer neural network shown in Fig. 4 is adopted to implement the proposed WRBFN. The WRBFN with MPSO controller is used, and the control law \(I_d\) is generated from the WRBFN. The WRBFN input is \(x_1^{(1)}\) and \(x_2^{(1)}\) of the first layer, where \(x_1^{(1)} = V_{dc} - V_{dc}^* = e\) and \(x_2^{(1)} = \dot{e}\) in this study. In the proposed WRBFN, the units in the input, hidden, and output layers are two, nine and one, respectively. The signal propagation and the basic function in each layer can be found (Lin & George Lee 1996).
Layer 1: input layer

The nodes at this layer are used to directly transmit the numerical inputs to the next layer. That is, for the \(i \)th node of layer 1, the net input and output are defined by

\[
\text{net}_i^{(1)} = x_i^{(1)}(N) \\
y_i^{(1)}(N) = f_i^{(1)}(\text{net}_i^{(1)}(N)) = \text{net}_i^{(1)}(N) \quad i = 1, 2
\]

(7)

Layer 2: hidden layer

At this layer, every node performs a Gaussian basis function. The Gaussian basis function, a particular example of radial basis functions, is used here as a membership function. Then

\[
\text{net}_j^{(2)}(N) = -\sum_{i=1}^{m} (x_i^{(1)} - c_{ij})^2 / v_{ij} \\
y_j^{(2)}(N) = f_j^{(2)}(\text{net}_j^{(2)}(N)) = \exp(\text{net}_j^{(2)}(N)) \quad j = 1,...,9
\]

(8)

where \(c_j = [c_{1j} \ c_{2j} \ \cdots \ c_{ij}]^T \) and \(v_{ij} \) denote respectively, the mean and the standard deviation (STD) of the Gaussian basis function.

Layer 3: output layer

The single node \(k \) in this layer is denoted by \(\Sigma \), which computes the overall output as the summation of all incoming signals by

\[
\text{net}_k^{(3)} = \sum_{j=1}^{m} w_{jk}y_j^{(2)}(N), \\
y_k^{(3)}(N) = f_k^{(3)}(\text{net}_k^{(3)}(N)) = \text{net}_k^{(3)}(N) = I_d
\]

(9)
where the connection weight w_{jk} is the connective weight between the hidden node, and the output layer k.

4.2 The network training and learning process

Once the WRBFN has been initialized, a supervised learning law is used to train this system. The basis of this algorithm is gradient descent. The derivation is the same as that of the back-propagation algorithm. It is employed to adjust the parameters w_{jk}, c_{ij}, v_{ij} of the WRBFN by using the training patterns. By recursive application of the chain rule, the error term for each layer is first calculated. The adaptation of weights to the corresponding layer is then given. The purpose of supervised learning is to minimize the error function E expressed as

$$E = \frac{1}{2} (V_{dc} - V_{dc}^*)^2 = \frac{1}{2} e_{dc}^2$$ \hspace{1cm} (10)$$

where V_{dc}^* and V_{dc} represent the dc-link voltage reference and actual dc-link voltage feedback of the generator.

Layer 3: update weight w_{jk}

At this layer, the error term to be propagated is given by

$$\delta_k = -\frac{\partial E}{\partial \text{net}_k^{(3)}} = \left[-\frac{\partial E}{\partial y_k^{(3)}} \frac{\partial y_k^{(3)}}{\partial \text{net}_k^{(4)}} \right]$$ \hspace{1cm} (11)$$

Then the weight w_{jk} is adjusted by the amount

$$\Delta w_{jk} = -\frac{\partial E}{\partial w_{jk}} = \left[-\frac{\partial E}{\partial y_k^{(3)}} \frac{\partial y_k^{(3)}}{\partial \text{net}_k^{(3)}} \right] \left(\frac{\text{net}_k^{(3)}}{\partial w_{jk}} \right)^T = \delta_k y_j^{(2)}$$ \hspace{1cm} (12)$$

We have

$$w_{jk}(N+1) = w_{jk}(N) + \eta_w \Delta w_{jk}(N)$$ \hspace{1cm} (13)$$

where η_w is the learning rate for adjusting the parameter w_{jk}.

Layer 2: update c_{ij} and v_{ij}

The multiplication operation is done in this layer. The adaptive rule for c_{ij} is

$$\Delta c_{ij} = -\frac{\partial E}{\partial c_{ij}} = \left[-\frac{\partial E}{\partial \text{net}_k^{(3)}} \frac{\partial \text{net}_k^{(3)}}{\partial c_{ij}} \right] = \delta_k w_{jk} y_j^{(2)} \frac{2(x_i^{(1)} - c_{ij})}{v_{ij}}$$ \hspace{1cm} (14)$$

and the adaptive rule for v_{ij} is

$$\Delta v_{ij} = -\frac{\partial E}{\partial v_{ij}} = \left[-\frac{\partial E}{\partial \text{net}_k^{(3)}} \frac{\partial \text{net}_k^{(3)}}{\partial v_{ij}} \right] = \delta_k w_{jk} \frac{2(x_i^{(1)} - c_{ij})^2}{(v_{ij})^2}$$ \hspace{1cm} (15)$$
We have
\[
\begin{align*}
 c_{ij}(k+1) &= c_{ij}(k) + \eta_m \Delta c_{ij} \\
 v_{ij}(k+1) &= v_{ij}(k) + \eta_\sigma \Delta v_{ij}
\end{align*}
\]
where \(\eta_m \) and \(\eta_\sigma \) are the learning rates for adjusting the parameters \(c_{ij} \) and \(v_{ij} \), respectively. The exact calculation of the jacobian of the system, which is contained in \(\frac{\partial E}{\partial y_k^{(3)}} \), cannot be determined due to the uncertainty of the PMSG dynamic. To overcome this problem and to increase the on-line learning ability of the connective weights, the delta adaptation law (Lin & George Lee 1996) is implemented as follows to solve the difficulty
\[
\delta_k \equiv \dot{e}_L + \dot{\hat{e}}_L
\]
The learning rates \(\eta_w, \eta_m, \eta_\sigma \) are adjusted by MPSO as stated below.

5. WRBFN learning rates adjustment using MPSO

PSO is a population-based optimization method first proposed by Kennedy and Eberhart. PSO technique finds the optimal solution using a population of particles. Each particle represents a candidate solution to the problem. PSO is basically developed through simulation of bird flocking in two-dimensional space (Esmin et al. 2005).

Step 1: Define basic conditions
In the first step of MPSO, one should determine the parameters that need to be optimized and give them minimum and maximum ranges. The number of groups, population size of each group, and initial radius of each \(g_{best} \) are also assumed in this step.

Step 2: Initialize random swarm location and velocity
To begin, initial location \(R_i^d(N) \) and velocities \(v_i^d(N) \) of all particles are generated randomly in whole search space. Moreover, the population size is set to \(P = 15 \) and the dimension of the particle is set to \(d = 3 \) in this study. The generation particles are
\[R_i^d = [R_i^1, R_i^2, R_i^3], \]
where \(R_i^1, R_i^2, R_i^3 \) are the RBFN learning rates, respectively. The initial \(p_{best} \) of a particle is set by its current position. Then, \(g_{best} \) of a group is selected among the \(p_{bests} \) in the group.

The random generation of \(R_i^d(N) \) initial value ranged as
\[
R_i^d \sim U[\eta_{\min}^d, \eta_{\max}^d]
\]
where \(\eta_{\min}, \eta_{\max} \) are the lower and upper bound of the learning rates.

Step 3: Update velocity
In the classical PSO algorithm, the velocity of a particle was determined according to the relative location from \(p_{best} \) and \(g_{best} \).

During each iteration, every particle in the swarm is updated using (17) and (18). Two pseudorandom sequences \(r_1 \sim U(0,1) \) and \(r_2 \sim U(0,1) \) are used to produce the stochastic nature of the algorithm. For dimensions \(d \), let \(R_i^d, P_{best_i}^d, \) and \(v_i^d \) be the current position, current personal best position. The velocity update step is
Intelligent Approach to MPPT Control Strategy for Variable-Speed Wind Turbine Generation System

\[
v_i^d(N + 1) = wv_i^d(N) + c_1 \cdot r_1 \cdot (P_{\text{best}}^d - R_i^d(N)) + c_2 \cdot r_2 \cdot (\text{Gbest}^d - R_i^d(N)) \tag{17}
\]

Step 4: Update position

The new velocity is then added to the current position of the particle to obtain its next position

\[
R_i^d(N + 1) = R_i^d(N) + v_i^d(N + 1) \quad i = 1,\ldots,P
\tag{18}
\]

Step 5: Update \(\text{pbests} \)

If the current position of a particle is located within the analysis space and does not intrude territory of other \(\text{gbests} \), the objective function of the particle is evaluated. If the current fitness is better than the old \(\text{pbest} \) value, \(\text{pbest} \) is replaced by the current position. The fitness value of each particle is calculated by

\[
FIT = \frac{1}{0.1 + \text{abs}(V_{dc} - V_{dc}^*)}
\tag{19}
\]

Step 6: Update \(\text{gbests} \)

In the conventional PSO, \(\text{gbest} \) is replaced by the best \(\text{pbest} \) among the particles. However, when such a strategy is applied to multimodal function optimization, some \(\text{gbests} \) of different groups can be overlapped. To maintain fast convergence rate of PSO, \(\text{gbest} \) of the group could be selected among the \(\text{Pbest}^d_i = [\text{Pbest}_{1,i}^d, \text{Pbest}_{2,i}^d, \ldots, \text{Pbest}_{P,i}^d] \) having high fitness value.

Step 7: Repeat and check convergence

Steps 3-6 are repeated until all particles are gathered around the \(\text{gbest} \) of each group, or a maximum iteration number is encountered. The final \(\text{Gbest}_i^d \) is the optimal learning rate \((\eta_w, \eta_m, \eta_\sigma)\) of RBFN.

The inertia weight \(w \) in (17) is used to control the convergence behavior of the PSO. Small \(w \) results in rapid convergence usually on a suboptimal position, while a large value may cause divergence. In this paper, the inertia weight \(w \) is set according to the equation that

\[
w = w_{\text{max}} - \frac{w_{\text{max}} - w_{\text{min}}}{\text{iter}_{\text{max}}} \cdot \text{iter}
\tag{20}
\]

where \(\text{iter}_{\text{max}} \) is maximum number of iterations, and \(\text{iter} \) is the current iteration number.

6. Experimental results

The WRBFN with MPSO performance is compared with two baseline controllers: the fuzzy (Chen et al. 2000) and the proportional-integral (PI) controller. The WRBFN with MPSO, fuzzy and PI methods were tested through experimental. The obtained performance with the different controllers are shown in Fig. 5 to Fig. 7, and summarized in Table 1. Various
cases were conducted, the wind profile is simulation with a 5 msec sampling time the wind profile is assumed a volatile sinusoidal wave. The conventional PI type controller is widely used in the industry due to its simple control structure, ease of design and inexpensive cost. The average power of PI is compared with that of WRBFN with MPSO algorithm and Fuzzy-Based algorithm.

The WTG system used for the experimental has the following parameters:

1. Wind turbine parameters:
 \[P_m = 750W \; ; \; 3.75A \; ; \; 3000r / \text{min} \; ; \; \rho = 1.25kg / m^3 \; ; \; r = 0.5m \; ; \; J = 1.32 \times 10^{-3} Nmsec^2 \]

2. Generator parameters:
 \[R = 1.47\Omega \; ; \; L_d = L_q = 5.33mH \; ; \; L_{md} = 4.8mH \; ; \; I_{jd} = 46.75A \; ; \; K_t = 0.6732Nm / A \]

6.1 PI algorithm for \(V_{dc} \) control

The WRBFN with MPSO algorithm replaced by PI algorithm is shown in Fig. 2. Fig. 5 illustrates the experimental result for PI control. The average power is 205W for the same period. It can be found that TSR is always round 6.9 and \(C_p \) is 0.4412. The verification of maximum power tracking control is shown in Fig. 5(a). The dc-link voltage tracking response is shown in Fig. 5(b). Fig. 5(c) and 5(d) shows power coefficient \(p_C \) and TSR \(\lambda \).

6.2 Fuzzy-based algorithm for \(V_{dc} \) control

The WRBFN with MPSO algorithm replace by Fuzzy-Based algorithm as shown in Fig. 2. A fuzzy logic control (FLC) algorithm is characterized by “IF-THEN” rules. The algorithm is suitable for wind turbine control with complex nonlinear models and parameters variation. The input variables of Fuzzy-Based MPPT are dc-link power tracking error and the difference of dc-link power tracking error.

Fig. 6 shows that 217W (an increase of 5.36% compared with that of PI control) is obtained by the Fuzzy-Based algorithm during the 50 sec. It can be found that \(\lambda \) and \(C_p \) are close to the optimal values of 6.9 and 0.4412, respectively. The wind speed profiles of turbine power \(P_m \) and dc-link power \(P_{dc} \) are also shown in Fig. 6(a). The dc-link voltage tracking response is shown in Fig. 6(b). Fig. 6(c) and 6(d) are shows that power coefficient \(p_C \) and TSR \(\lambda \).

6.3 WRBFN with MPSO algorithm for \(V_{dc} \) Control

WRBFN with MPSO algorithm control is considered and the experimental result is shown in Fig. 7. The verification of maximum power tracking control is shown in Fig. 7(a), where the wind speed profiles of turbine power \(P_m \) and dc-link power \(P_{dc} \) are also shown. The dc-link voltage tracking response is shown in Fig. 7(b). Fig. 7(c) shows power coefficient \(C_p \) which is close to its maximum value during the whole wind speed profile, same for \(\lambda \) of Fig. 7(d). The efficiency of the maximum power extraction can be clearly observed as the power coefficient is fixed at the optimum value \(C_p = 0.4412 \) and \(\lambda = 6.9 \). The average power is 224W. Compared with that from the PI control method, it increases by 9.27%.
Intelligent Approach to MPPT Control Strategy for Variable-Speed Wind Turbine Generation System

(a) Turbine power P_m

(b) DC-link Power P_{dc}

Actual DC-link Voltage V_{dc}

DC-link Voltage V^*_d

www.intechopen.com
Fig. 5. Experimental results of the wind speed profile: (a) the maximum power tracking control signal. (b) The dc-link voltage tracking response. (c) Power coefficient C_p. (d) Tip-speed ratio λ.
Intelligent Approach to MPPT Control Strategy for Variable-Speed Wind Turbine Generation System

(a) Turbine power P_m

(b) DC-link Power P_{dc}

DC-link Voltage V_{dc}^*

Actual DC-link Voltage V_{dc}

www.intechopen.com
Fig. 6. Experimental results of the wind speed profile: (a) The maximum power tracking control signal. (b) The dc-link voltage tracking response. (c) Power coefficient C_p. (d) Tip-speed ratio λ.

www.intechopen.com
Intelligent Approach to MPPT Control Strategy for Variable-Speed Wind Turbine Generation System

(a) Turbine power P_m

(b) DC-link Power P_{dc}

DC-link Voltage V_{dc}^*

Actual DC-link Voltage V_{dc}

www.intechopen.com
Fig. 7. Experimental results of the wind speed profile: (a) The maximum power tracking control signal. (b) The dc-link voltage tracking response. (c) Power coefficient C_p. (d) Tip-speed ratio λ.

www.intechopen.com
Table 1. Performance for various control methods

From the performance comparison for various methods above experimental results, we can see that MPPT is important for either high or low wind speeds, as shown in Table 1. Table 1 shows the average power, maximum error of power coefficient, maximum error of DC-link power and percentage of power increase from each control method. On the other hand, the maximum error of the power coefficient is around 23% in [9], and the maximum power deviation is about 7% in [14]. The proposed method in comparison with other methods [9,14] has better performance.

7. Conclusion

This paper focuses on the development of maximum wind power extraction algorithms for inverter-based variable speed WPGS. The HCS method is proposed in this paper for maximum power searching with various turbine inertia. Without a need for measurements of wind speed and turbine rotor speed, HCS is simple to implement. When exciting the system with a real wind profile, the system is able to track maximum power using generated power as input. The proposed system has been implemented, with a commercial PMSG and a dc drive to emulate the wind turbine behavior. The process is running in a dSPACE board that includes a TMS320C32 floating-point DSP. Experimental results show the appropriate behavior of the system.

Three MPPT control algorithms are proposed in this paper, without any wind speed sensor. It is found that the PI method can operate near the optimal C_p. However, the PI-type controller may not provide perfect control performance if the controlled plant is highly nonlinear or the desired trajectory is varied with higher frequency. The proposed output maximization control of WRBFN can maintain the system stability and reach the desired performance even with parameter uncertainties.

8. References

The area of wind energy is a rapidly evolving field and an intensive research and development has taken place in the last few years. Therefore, this book aims to provide an up-to-date comprehensive overview of the current status in the field to the research community. The research works presented in this book are divided into three main groups. The first group deals with the different types and design of the wind mills aiming for efficient, reliable and cost effective solutions. The second group deals with works tackling the use of different types of generators for wind energy. The third group is focusing on improvement in the area of control. Each chapter of the book offers detailed information on the related area of its research with the main objectives of the works carried out as well as providing a comprehensive list of references which should provide a rich platform of research to the field.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike-3.0 License, which permits use, distribution and reproduction for non-commercial purposes, provided the original is properly cited and derivative works building on this content are distributed under the same license.