The Effect of Temperature on Actual Evapotranspiration based on Landsat 5 TM Satellite Imagery

Preeyaphorn Kosa
School of Civil Engineering, Institute of Engineering, Suranaree University of Technology
Thailand

1. Introduction

In the water cycle, evapotranspiration is one of the most important components, but it is one of the most difficult to measure and monitor. Evapotranspiration relates to the exchange of energy in the atmosphere, ground surface, and root zone. Some elements of calculated evapotranspiration can be measured by weather stations, while others are estimated from empirical equations. Then, the calculated evapotranspiration has some inaccuracy. To improve upon this problem, the combination of meteorological data and remote sensing observations are an alternative evapotranspiration approach. (Hongjie et al., 2002; Kalluri et al., 2003) On the other hand, temperature is normally measured in a number of weather stations. Since temperature relates to many weather data, temperature can imply the characteristic of other weather data. For example, low temperature is included high humidity but low evaporation can be occurred in the condition of low temperature. Moreover, the variable spatial resolution is the characteristic of both actual evapotranspiration and temperature. At present, satellite image are used for studying the Earth's surface and it bolsters spatial resolution. Then, the purpose of this study is to determine the effect of temperature on actual evapotranspiration using satellite image. Evapotranspiration occurs from evaporation and transpiration, and it can be obtained from weather data and satellite images. Evaporation is the primary process of water transfer in the hydrological cycle. The water is transformed into vapour and transported into the sky. Evaporation can be classified into potential evaporation and actual evaporation. The potential evaporation is defined as the amount of evaporation that would occur if a sufficient water source were available. On the other hand, the actual evaporation is the amount of water which is evaporated a normal day. The potential evaporation is the maximum value of the actual evaporation. Transpiration is included by the vaporization of liquid water contained in plant tissues and the vapor removal to the atmosphere. (Hongjie et al., 2002; Kalluri et al., 2003) Evapotranspiration is normally computed from the Penman-Monteith FAO 56 equation using weather data. This equation is affected by principal weather parameters such as radiation, air temperature, humidity and wind speed. These parameters can be measured by weather station and computed by the equation of FAO irrigation and Drainage Paper No. 56 (Allen et al., 1998). In addition to the Penman-Monteith FAO 56 equation, evapotranspiration can be estimated from the concept of energy...
balance. The main components of the energy balance equation are sensible heat flux, latent heat flux, soil heat flux, and net radiation. These elements relate with incoming and outgoing radiation in the atmosphere, ground surface, and root zone. They are estimated from remote sensing data and weather data. (Wei and Sado, 1994; Amin et al., 1997; Xihua et al., 1997; Andrew et al., 2002)

Remotely sensed data are used for studying the Earth's surface. Current technology allows continuous acquisition of data, regular revisit capabilities (resulting in up-to-date information), broad regional coverage, good spectral resolution (including infra-red bands), good spatial resolution, ability to manipulate/enhance digital data, ability to combine satellite digital data with other digital data, cost-effective data, map-accurate data, possibility of stereo viewing, and large archives of historical data. Remote sensing helps to record data from remote locations. Satellite data provides timely and detailed information about the Earth's surface, especially in relation to the management of our renewable and non-renewable resources. The advantages of satellite data for many fields include for example; assessment and monitoring of vegetation types and their status, soil surveys, mineral exploration, map making and revision, production of thematic maps, water resources planning and monitoring, urban planning, agricultural property planning and management, crop yield assessment, and natural disaster assessment.

The Surface Energy Balance Algorithm for Land or SEBAL (Bastiaanssen et al., 1998a and Bastiaanssen et al., 1998b) is an image processing model to calculate evapotranspiration by using satellite imagery and weather data with the concept of energy balance at the land surface, so evapotranspiration for each pixel is calculated. Satellite images that can be used in SEBAL are LANDSAT, NOAA-AVHRR, MODIS, and ASTER. The advantages of SEBAL are easily applicable because of minimal collateral data needed, applicable to various climates because of physical concepts, no need for land use classification, no need to involve data demanding hydrology, and is a suitable method for all visible, near-infrared and thermal radiometers. However, the disadvantages of SEBAL include cloud-free conditions being required and that surface roughness is poorly described, so that SEBAL is only suitable for flat terrain. (Timmermans et al., 2001; Allen et al., 2001; Lal et al., 2001; Ines, 2002; Abou and Tanton, 2003; Jacob et al., 2003)

2. Landsat 5 TM

Landsat 5 TM has a unique and necessary role in the realm of earth observing satellite orbits, because no other satellite of the earth observing system matches with the synoptic coverage, high spatial resolution, spectral range and radiometric calibration of Landsat’s system. Landsat 5 TM satellite imagery Path/Row:127/48 was mainly input data. The spatial resolution of Landsat 5 TM satellite imagery is 30 m and the swath width covered by the image is 185 km. The details of Landsat 5 TM characteristic are shown in Table 1 and Table 2. (Farr, 1999) At the ground stations, the Landsat ground system consists of a spacecraft control center, ground stations for uplinking commands and receiving data, a data handling facility and a data archive, which were developed by the Goddard Space Flight Center, Greenbelt, MD., in conjunction with the U.S. Geological Survey (USGS) EROS Data Center (EDC), Sioux Falls, SD. These facilities will receive, process, archive, and distribute ETM+ data to users. Raw ETM+ data can be transmitted to the EROS Data Center by the ground system within 24 hours of its reception. (Farr, 1999; Liu, 2000; and Liang et al., 2001)
The Effect of Temperature on Actual Evapotranspiration based on Landsat 5 TM Satellite Imagery

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swath width:</td>
<td>185 km</td>
</tr>
<tr>
<td>Repeat coverage interval:</td>
<td>16 days (233 orbits)</td>
</tr>
<tr>
<td>Altitude:</td>
<td>705 km</td>
</tr>
<tr>
<td>Quantization:</td>
<td>Best 8 of 9 bits</td>
</tr>
<tr>
<td>On-board data storage:</td>
<td>~ 375 Gb (solid state)</td>
</tr>
<tr>
<td>Inclination:</td>
<td>Sun-synchronous, 98.2 degrees</td>
</tr>
<tr>
<td>Equatorial crossing:</td>
<td>Descending node; 10:00 am +/- 15 min</td>
</tr>
<tr>
<td>Launch vehicle:</td>
<td>Delta II</td>
</tr>
<tr>
<td>Launch date:</td>
<td>April 1999</td>
</tr>
</tbody>
</table>

Table 1. Landsat 5 TM mission specification

<table>
<thead>
<tr>
<th>Channel</th>
<th>Spectral Range (microns)</th>
<th>Ground Resolution (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Visible and near infrared: VNIR)</td>
<td>0.450 - 0.515</td>
<td>30</td>
</tr>
<tr>
<td>2 (Visible and near infrared: VNIR)</td>
<td>0.525 - 0.605</td>
<td>30</td>
</tr>
<tr>
<td>3 (Visible and near infrared: VNIR)</td>
<td>0.630 - 0.690</td>
<td>30</td>
</tr>
<tr>
<td>4 (Visible and near infrared: VNIR)</td>
<td>0.750 - 0.900</td>
<td>30</td>
</tr>
<tr>
<td>5 (Short wavelength infrared: SWIR)</td>
<td>1.550 - 1.750</td>
<td>30</td>
</tr>
<tr>
<td>6 (Thermal long wavelength infrared: LWIR)</td>
<td>10.40 - 12.50</td>
<td>60</td>
</tr>
<tr>
<td>7 (Short wavelength infrared: SWIR)</td>
<td>2.090 - 2.350</td>
<td>30</td>
</tr>
<tr>
<td>Pan (Visible and near infrared: VNIR)</td>
<td>0.520 - 0.900</td>
<td>15</td>
</tr>
</tbody>
</table>

Table 2. Landsat 5 TM characterist

This Landsat 5 TM image covers Sri Songkhram sub-river basin where locates in the lower part of Mekhong river basin. Mekhong river basin is in the northeast of Thailand. The time period of this study is from November 2006 to January 2007. They were selected because they are in the period of the dry season. Also, They are in the condition of clear sky. Moreover, there is the cultivation during this time so there are both evaporation and transpiration that is evapotranspiration.

3. Radiation

Extraterrestrial radiation (R_a) is the solar radiation received at the top of the earth’s atmosphere on a horizontal surface. The values of extraterrestrial radiation depend on seasons change, the position of the sun, and the length of the day. Therefore, the extraterrestrial radiation is a function of latitude, and the date and time of day. The solar constant is the radiation striking a surface perpendicular to the sun’s rays at the top of the earth’s atmosphere and it is some 0.082 MJ m$^{-2}$ min$^{-1}$. If the position of the sun is directly overhead, the incidence angle of extraterrestrial radiation is zero. In this case, extraterrestrial radiation is some 0.082 MJ m$^{-2}$ min$^{-1}$.

Solar or shortwave radiation (R_s) is the amount of radiation penetrating from the atmosphere to a horizontal plane. The sun emits energy by electromagnetic waves that include short wavelengths so solar radiation is referred to as shortwave radiation. In the atmosphere, radiation is absorbed, scattered, or reflected by gases, clouds, and dust. For a cloudless day, the solar radiation is about 75% of the extraterrestrial radiation, while it is...
about 25% of the extraterrestrial radiation on a cloudy day. The solar radiation, which is
known as global radiation, is a summation of direct shortwave radiation from the sun and a
diffuse sky radiation from all upward angles.
Relative shortwave radiation \(\left(\frac{R_s}{R_{so}} \right) \) is a relationship between shortwave radiation \(R_s \) and clear-sky solar radiation \(R_{so} \). The shortwave radiation is solar radiation that actually
reaches to the earth’s surface in a given time, while clear-sky solar radiation is solar
radiation that reaches to the same area with a clear-sky condition. The relative shortwave
radiation is affected by the cloudiness of the atmosphere. On a cloudy day, the ratio is
smaller than on a cloudless day. The range of this ratio is between 0.33 (cloudy condition) to
1.00 (cloudless condition).
Relative sunshine duration \(\left(\frac{n}{N} \right) \) shows the cloudiness in the atmosphere. It is the
relationship between the actual duration of sunshine (\(n \)) and the maximum possible
duration of sunshine, or daylight hours (\(N \)). For the cloudless condition, \(n \) is equal to \(N \),
while \(n \) and \(n/N \) are nearly zero for the cloudy condition. The maximum possible duration
of sunshine, or daylight hours (\(N \)), depends on the position of the sun, so it is a function of
latitude and date. The daily values of \(N \) throughout a year differ with latitude.
Albedo \((\alpha) \) is a relationship between reflected radiation and total incoming radiation. It
varies with both the characteristics of surface and the angle of incidence, or the slope of
ground surface. Albedo can be more than 0.95 for freshly fallen snow, and it is smaller than
0.05 for wet bare soil. The range of albedo for green vegetation is about 0.20 – 0.25 and
albedo for the green grass reference crop is 0.23.
Net solar radiation \(R_{ns} \) is the fraction of the solar radiation that is reflected from the
ground surface. It can be calculated by Equation (1):

\[
R_{ns} = (1 - \alpha)R_s
\]

Net longwave radiation \(R_{nl} \) is the difference in value between outgoing and incoming
longwave radiation. The longwave radiation is solar radiation absorbed by the earth and
turned to heat energy. Since the temperature of the earth is less than the sun, so the earth
emits longer wavelengths. Terrestrial radiation is referred to as longwave radiation. The
emitted longwave radiation \(R_{l,up} \) is absorbed by the atmosphere or lost into space. The
longwave radiation received by the atmosphere \(R_{l,down} \) increases its temperature.
Therefore, the earth’s surface both emits and receives longwave radiation. The value of
outgoing longwave radiation is normally more than incoming longwave radiation, so the
net longwave radiation is used to present the energy loss.
Net radiation \(R_n \) is the difference in value between incoming and outgoing radiation of
both short and long wavelengths. It is the balance among energy absorbed, reflected, and
emitted by the earth’s surface. The net radiation is also the difference in value between the
incoming net shortwave \(R_{ns} \) and the net outgoing longwave \(R_{nl} \) radiation. It is a
positive value during daytime, while it is a negative value during nighttime. For the total
daily value, it is a positive value except for the condition of high latitude.
Soil heat flux (\(G \)) is energy that is used in heating the soil. It is a positive value under the
condition of warming soil and negative value under the condition of cooling soil. The soil
heat flux is very small when compares with net radiation but it cannot be ignored.
The Effect of Temperature on Actual Evapotranspiration based on Landsat 5 TM Satellite Imagery

4. Temperature calculation

Normally, Landsat 5 TM satellite image data is in the form of Digital Number (DN) so it’s necessary to convert from Digital Number to Radiances for all bands in Landsat 5 TM image. An equation for converting is shown in follow equation.

\[
L_{\lambda} = \frac{(L_{\lambda, \text{MAX}} - L_{\lambda, \text{MIN}})}{(Q_{\text{CALMAX}} - Q_{\text{CALMIN}})} \times (Q_{\text{CAL}} - Q_{\text{CALMIN}}) + L_{\lambda, \text{MIN}} \tag{2}
\]

where \(L_{\lambda} \) is spectral radiance at the sensor aperture in watts/(meter squared *ster* \(\mu \) m), \(Q_{\text{CAL}} \) is the quantized calibrated pixel value in DN, \(L_{\lambda, \text{MIN}} \) is the spectral radiance that is scaled to \(Q_{\text{CALMIN}} \) in watts/(meter squared *ster* \(\mu \) m), \(L_{\lambda, \text{MAX}} \) is the spectral radiance that is scaled to \(Q_{\text{CALMAX}} \) in watts/(meter squared *ster* \(\mu \) m), \(Q_{\text{CALMIN}} \) is the minimum quantized calibrated pixel value (corresponding to \(L_{\lambda, \text{MIN}} \)) in DN and \(Q_{\text{CALMAX}} \) is the maximum quantized calibrated pixel value (corresponding to \(L_{\lambda, \text{MAX}} \)) in DN.

\(L_{\lambda, \text{MAX}} \) and \(L_{\lambda, \text{MIN}} \) are the spectral radiances for each band at digital number 1 and 255 (i.e \(Q_{\text{CALMIN}}, Q_{\text{CALMAX}} \)), respectively. \(Q_{\text{CAL}} \) or DN, \(L_{\lambda, \text{MAX}} \) and \(L_{\lambda, \text{MIN}} \) are input data. These elements are values in header file information.

Thereafter a thermal band or band 6 imagery is converted to the effective at satellite temperature (\(T_{bb} \)) calculated by follow equation.

\[
T_{bb} = \frac{K_2}{\ln \left(\frac{K_1}{L_6} + 1 \right)} \tag{3}
\]

For thermal band, calibration constants, \(K_1 \) and \(K_2 \), are 666.09 watts/(meter squared *ster* \(\mu \) m) and 1282.71 Kelvin, respectively. \(L_6 \) is the spectral radiance for band 6 in watts/(meter squared *ster* \(\mu \) m). Then, surface temperature (\(T_s \)) is computed by follow equation.

\[
T_s = \frac{T_{bb}}{\varepsilon_0^{0.25}} \tag{4}
\]

where \(\varepsilon_0 \) is surface emissivity.

5. Actual evapotranspiration calculation

SEBAL is a tool to estimate actual evapotranspiration for flat areas with the most accuracy and confidence. Satellite image and weather data are used in the SEBAL model to calculate actual evapotranspiration by using a surface energy balance at the land surface. SEBAL evaluates an instantaneous actual evapotranspiration flux for the image time, because the satellite image provides information for the overpass time only. The actual evapotranspiration flux can be calculated for each pixel of the image as a residual of the surface energy budget equation. SEBAL needs both shortwave and thermal bands. The required ground-based data is wind speed. The SEBAL energy balance calculates actual evapotranspiration for each pixel for the time of the satellite image, so the results are
instantaneous actual evapotranspiration. To obtain actual evapotranspiration using the conception of SEBAL, following equations are applied (Bastiaanssen et al., 1998a; Bastiaanssen et al., 1998b; Bastiaanssen, 2000; Chemin and Ahmad, 2000; Bastiaanssen et al., 2002).

Firstly, data in the format of radiance is converted to reflectance for all bands. For this converting, thermal band (band 6) is not considered. In practice, band 6 is converted, but it is a dummy in this file. The equation used to convert radiance to reflectance is presented as following:

\[\rho_\lambda = \frac{\pi \times L_\lambda}{\text{ESUN}_\lambda \times \cos \theta \times d_r} \]

(5)

where \(\rho_\lambda \) is unitless planetary reflectance, \(L_\lambda \) calculates from equation (1), \(\text{ESUN}_\lambda \) is mean solar exoatmospheric irradiances from Table 3, \(\theta \) is solar zenith angle in degrees, and \(d_r \) is the Earth-Sun distance in astronomical that can be obtained from follow equation

\[d_r = 1 + 0.033 \cos \left(\frac{\text{DOY} \times 2\pi}{365} \right) \]

(6)

where DOY (or J) is number of day in one year for example DOY of January 1 is 1 while DOY of December 31 is 365.

\[\cos \theta = \cos(90 - \beta) \]

(7)

where \(\beta \) is sun elevation angle in degree and \(\cos \theta \) is in degree.

\[\text{[Radians]} = \frac{\pi}{180} \times \text{[decimal degrees]} \]

(8)

Albedo for the top of atmosphere (\(\alpha_{\text{toa}} \)) can be considered from follow equation

\[\alpha_{\text{toa}} = \sum (\omega_\lambda \times \rho_\lambda) \]

(9)

\[\omega_\lambda = \frac{\text{ESUN}_\lambda}{\sum \text{ESUN}_\lambda} \]

(10)

where \(\omega_\lambda \) is weighting coefficient, which is constant value.

<table>
<thead>
<tr>
<th>Band</th>
<th>Solar Spectral Irradiances in watts/(meter squared ster μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>from 1969 to 1957</td>
</tr>
<tr>
<td>2</td>
<td>from 1840 to 1829</td>
</tr>
<tr>
<td>3</td>
<td>from 1551 to 1557</td>
</tr>
<tr>
<td>4</td>
<td>from 1044 to 1047</td>
</tr>
<tr>
<td>5</td>
<td>from 225.7 to 219.3</td>
</tr>
<tr>
<td>7</td>
<td>from 82.07 to 74.52</td>
</tr>
<tr>
<td>Pan</td>
<td>from 1969 to 1957</td>
</tr>
</tbody>
</table>

Table 3. Solar Spectral Irradiances
Surface albedo equation \(\alpha \) can be considered from follow equation

\[
\alpha = \frac{\alpha_{\text{toa}} - \alpha_{\text{path-radiance}}}{\tau_{\text{sw}}^2}
\]

(11)

where \(\alpha_{\text{toa}} \) is calculated from previous step. \(\alpha_{\text{path-radiance}} \approx 0.03 \).

\(\tau_{\text{sw}} = 0.75 + 2 \times 10^{-5} \times z \)

(12)

where \(z \) is an elevation of area where is defined from Digital Elevation Map (DEM).

Incoming solar radiation \(R_{\downarrow} \) is estimated in spreadsheet using follow equation.

\[R_{\downarrow} = G_{\text{sc}} \times \cos \theta \times \text{d}_{\text{r}} \times \tau_{\text{sw}} \]

(13)

where \(G_{\text{sc}} \) is solar constant value, 1367 W/m\(^2\).

Vegetation indices can be considered from follow equations.

\[\text{NDVI} = \frac{\rho_4 - \rho_3}{\rho_4 + \rho_3} \]

(14)

\[\text{SAVI} = \frac{(1 + L)(\rho_4 - \rho_3)}{L + \rho_4 + \rho_3} \]

(15)

\[\text{LAI} = -\frac{\ln\left(\frac{0.69 - \text{SAVI}}{0.59}\right)}{0.91} \]

(16)

where \(\rho_3 \) and \(\rho_4 \) are reflectance value in red and near-infrared bands (band 3 and 4), respectively. \(L \) is constant for SAVI (\(L = 0.5 \), when an area have no information for \(L \)). \(L = 0.5 \) is suitable for this practice.

Surface emissivity \(\varepsilon_0 \) can be considered from follow equation

\[\varepsilon_0 = 1.009 + 0.047 \times \ln(\text{NDVI}) \]

(17)

Outgoing longwave radiation \(R_{\uparrow} \) can be calculated by following equation

\[R_{\uparrow} = \varepsilon_0 \sigma T_{\text{s}}^4 \]

(18)

where \(\sigma = 5.67 \times 10^{-8} \) W/(m\(^2\)-K\(^4\)).

For the selection of “anchor pixel”, SEBAL process utilizes two “anchor” pixels to fix boundary condition for the energy balance. (a) “Cold” pixel: a wet, well-irrigated crop surface with full cover \((T_{\text{s}} \approx T_{\text{air}}) \). In cold pixel, sensible heat flux (H) is usually zero so cold pixel should be selected from water area. (b) “Hot” pixel should be located in a dry and bare agricultural field where one can assume there is no evapotranspiration taking place, and should have a surface albedo similar to other dry and bare field in the area of interest. It should have a LAI in the range of 0 to 0.4. After the temperatures of both cold and hot pixel are defined, these values are used for calculation in the next step.
Incoming longwave radiation ($R_{L\downarrow}$) is computed in spreadsheet using following equation.

$$R_{L\downarrow} = \varepsilon_a \times \sigma \times T_{\text{cold}}^4$$

(19)

$$\varepsilon_a = 0.85 \times (-\ln r_{sw})^{0.09}$$

(20)

where ε_a is an atmospheric emissivity.

Net surface radiation flux (R_n) can be computed by following equation.

$$R_n = R_s\downarrow - \alpha R_s\downarrow + R_{L\downarrow} - R_{L\uparrow} - (1 - \varepsilon_a) R_{L\downarrow}$$

(21)

The soil heat flux (G) can be calculated from following equation.

$$\frac{G}{R_n} = \frac{T_s}{\alpha} \left(0.0038\alpha + 0.0074\alpha^2 \right) \left(1 - 0.98NDVI^4 \right)$$

(22)

After the above equations are computed, the main equation for sensible heat flux, latent heat flux, evaporative fraction, and 24-hour actual evapotranspiration are presented as following.

Sensible heat flux (H) is the flux of heat from the earth’s surface to the atmosphere. It is not associated with phase changes of water.

$$H = \frac{\rho \times c_p \times dT}{r_{ah}}$$

(23)

where ρ is air density (kg/m3), c_p is air specific heat (1004 J/kg/K), dT (K) is the temperature difference ($T_1 - T_2$) between two heights (z_1 and z_2), and r_{ah} is the aerodynamic resistance to heat transport (s/m).

The estimation of sensible heat flux is the largest drawback, because the temperature difference and aerodynamic resistance to heat transport are unknown for the sensible heat flux calculation. To find these unknowns, SEBAL first calculates the sensible heat flux at extreme dry and wet locations. They are manually identified by the user on the image. The aerodynamic resistance to heat transport is computed from the lower integration constant for r_{ah} ($z_1 = 0.1$ m.) and the upper integration constant for r_{ah} ($z_2 = 2$ m.).

For a dry pixel or hot pixel, it should be located in a dry and bare agricultural field where one can be assumed that there is no evapotranspiration taking place. The wet pixel or cold pixel will include a surface temperature equal to air temperature. The sensible heat flux for the cold pixel is usually zero. The linear relationship between the temperature difference (dT) and the surface temperature (T_s), $dT = a + bT_s$, is created, and the coefficients a and b are defined from the two (dT, T_s) pairs applicable to the hot and cold pixels. Then sensible heat flux can be computed for every pixel that has the condition of free convection. Next, the values of friction velocity (u^*) are estimated from the wind speed at the blending height, a value of 200 m will be used. Thereafter, the condition of mixed convection is applied, and the pixel-dependent aerodynamic resistance to heat transfer, r_{ah}, is calculated by using the Monin-Obukhov hypothesis. The new temperature difference is calculated. Finally the processes from the calculation of sensible heat flux to the temperature difference
are repeated until the aerodynamic resistance to heat transfer and temperature difference are stable values. To compute sensible heat flux, following processes are considered.

1. Friction velocity (u^*) can be computed as follow equation.

$$u^* = \frac{ku_x}{\ln \left(\frac{z_x}{z_{om}} \right)}$$ \hspace{1cm} (24)

The calculation of the friction velocity requires a wind speed measurement (u_x) at a known height (z_x) in the time of the satellite image. k is a constant (0.41). Then, u_x and z_x are known, but z_{om} is unknown. z_{om} can be calculated in many ways: from $z_{om} = 0.12 \times$ height of vegetation (h) for agricultural area, from a land-use map, or from a function of NDVI and surface albedo. At weather station, u_x, z_x, z_{om}, and u^* can be determined.

2. Wind speed at a height 200 m above the weather station can be computed as follow equation.

$$u_{200} = \frac{u^* \ln \left(\frac{200}{z_{om}} \right)}{k}$$ \hspace{1cm} (25)

3. The friction velocity for each pixel is calculated using the wind speed at a height 200 m (u_{200}) that is assumed to be constant for all pixels of the image because it is defined as occurring at a “blending height” unaffected by surface features. From equation (26), z_{om} is unknown to calculate the friction velocity, so z_{om} need to be fined.

$$u^* = \frac{ku_{200}}{\ln \left(\frac{200}{z_{om}} \right)}$$ \hspace{1cm} (26)

where z_{om} is the particular momentum roughness length of each pixel, z_{om} for each pixel can be computed by two methods: using a land-use map or using NDVI and surface albedo data (z_{om} is calculated in spreadsheet).

For this pattern, a land-use map is not available, and then NDVI and surface albedo data are used. In the method used NDVI and surface albedo, z_{om} is computed from the following equation:

$$z_{om} = \exp \left[\left(a \times \frac{\text{NDVI}}{\alpha} \right) + b \right]$$ \hspace{1cm} (27)

where a and b are correlation constants derived from a plot of $\ln(z_{om})$ vs $\frac{\text{NDVI}}{\alpha}$ for two or more sample pixels representing specific vegetation types. To determine a and b, a series of sample pixels representing vegetation types and conditions of interest are selected and the associated values for NDVI and surface albedo are obtained.
Typical surface albedo values for rice field and deciduous forest are 0.17 – 0.22 and 0.15 – 0.20, respectively.

4. Aerodynamic resistance to heat transport (r_{ah}) is computed as follow equation.

$$r_{ah} = \frac{\ln \left(\frac{z_2}{z_1} \right)}{u \times k}$$ \hspace{1cm} (28)

where z_1 and z_2 are 0.1 m and 2 m, respectively.

5. Near surface temperature difference (dT) for each pixel is calculated using equation (29) and the assumption of a linear relationship between T_s and dT.

$$dT = T_s - T_a$$ \hspace{1cm} (29)

where T_s is unknown.

$$dT = b + aT_s$$ \hspace{1cm} (30)

where a and b are the correlation coefficients.

To define these coefficients, SEBAL uses the “anchor” pixel where a value for sensible heat flux (H) can be reliably estimated.

a. At the “Cold” pixel

$$H_{cold} = R_n - G - LE_{cold}$$ \hspace{1cm} (31)

$$dT_{cold} = \frac{H_{cold} \times r_{ah}}{\rho \times c_p}$$ \hspace{1cm} (32)

If “Cold” pixel is chose from a body of water, $H_{cold} = 0$

$$LE_{cold} = R_n - G$$ \hspace{1cm} (33)

$$dT_{cold} = 0$$ \hspace{1cm} (34)

b. At the “Hot” pixel

$$H_{hot} = R_n - G - LE_{hot}$$ \hspace{1cm} (35)

In the case of H_{hot}, $LE_{hot} = 0$

$$H_{hot} = R_n - G$$ \hspace{1cm} (36)

$$dT_{hot} = \frac{H_{hot} \times r_{ah}}{\rho \times c_p}$$ \hspace{1cm} (37)

Then, $dT_{cold} = 0$ (T_{cold}, from selection in above step) and $dT_{hot} = \frac{H_{hot} \times r_{ah}}{\rho \times c_p}$ (T_{hot}, from selection in above step)

6. The sensible heat flux is calculated in this step, called initial sensible heat flux.
7. Monin-Obukhov theory in an iterative process is applied in SEBAL to account for the buoyancy effects, which are generated by surface heating. The Monin-Obukhov length \(L \) is used to define the stability conditions of the atmosphere in the iterative process (this is not the same “L” as used in the SAVI computation). It is a function of the heat and momentum fluxes and is computed as follow:

\[
L = -\frac{\rho \gamma_c u^3 T_s}{kgH}
\]

or

\[
L = -\frac{1 \times 1004 \times u^3 T_s}{0.41 \times 9.81H}
\]

8. The values of the stability corrections for momentum and heat transport (\(\psi_m \) and \(\psi_h \)) are computed as follow. These values depend on the condition of atmosphere.
If \(L < 0 \); unstable condition:

\[
\psi_{h(200m)} = 2 \ln \left(\frac{1 + x_{(200m)}}{2} \right) + \ln \left(\frac{1 + x_{(200m)}^2}{2} \right) - 2 \arctan \left(x_{(200m)} \right) + 0.5\pi
\]

\[
\psi_{h(2m)} = 2 \ln \left(\frac{1 + x_{(2m)}^2}{2} \right)
\]

\[
\psi_{h(0.1m)} = 2 \ln \left(\frac{1 + x_{(0.1m)}^2}{2} \right)
\]

where

\[
x_{(200m)} = \left(1 - 16 \frac{200}{L} \right)^{0.25}
\]

\[
x_{(2m)} = \left(1 - 16 \frac{2}{L} \right)^{0.25}
\]

\[
x_{(0.1m)} = \left(1 - 16 \frac{0.1}{L} \right)^{0.25}
\]

If \(L > 0 \); stable condition:

\[
\psi_{h(200)} = -5 \left(\frac{2}{L} \right)
\]

\[
\psi_{h(2m)} = -5 \left(\frac{2}{L} \right)
\]
\[\psi_{h(0.1m)} = -S\left(\frac{0.1}{L}\right) \]
\(\text{If } L = 0; \text{ neutral condition: } \psi_m \text{ and } \psi_h = 0\)

9. The friction velocity \((u^*)\), which is a corrected value, is now computed for each successive iteration as:

\[u^* = \frac{u_{200}k}{\ln\left(\frac{200}{z_{om}}\right) - \psi_m(200m)} \]
\(\text{where } u_{200} \text{ is in m/s and } k \text{ is 0.41.}\)

10. The aerodynamic resistance to heat transport \((r_{ah})\), which is a corrected value, is now computed during each iteration as:

\[r_{ah} = \frac{\ln\left(\frac{z_2}{z_1}\right) - \psi_h(z_2) + \psi_h(z_1)}{u^*k} \]
\(\text{where } r_{ah} \text{ is in m/s and } k \text{ is 0.41.}\)

11. Repeat the step of calculation from step 5) to 10) until the successive values for \(dT_{hot}\) and \(r_{ah}\) at the hot pixel have stabilized.

The latent energy of evaporation (LE) was computed using following equation.

\[LE = R_n - G - H \]
\(\text{where } R_n \text{ is daily net radiation, } G \text{ is daily soil heat flux, 86,400 is the number of seconds in a 24-hour period, and } \lambda \text{ is the latent heat of vaporization (J/kg).}\)

To estimate 24-hour actual evaporatranspiration, the following equation is utilized.

\[ET_{24} = \frac{86400\Lambda(R_{n24} - G_{24})}{\lambda} \]
\(\text{where } R_{n24} \text{ is daily net radiation, } G_{24} \text{ is daily soil heat flux, 86,400 is the number of seconds in a 24-hour period, and } \lambda \text{ is the latent heat of vaporization (J/kg).}\)
As above equations and calculation process, it can be also presented using Figure 1. Thereafter, to determine the relationship between the temperature and actual evapotranspiration, the maximum and minimum values of actual evapotranspiration in each temperature were ignored. The selected actual evapotranspiration in each temperature was averaged. Finally, the relationship between temperature and actual evapotranspiration was determined using a polynomial equation.

Fig. 1. The Surface Energy Balance Algorithm for Land Process
6. Validation

For the validation of temperature computed by using Landsat satellite image, it was compared with recorded temperature. On the other hand, to validate actual evapotranspiration calculated by SEBAL, recorded pan evaporation was used. Pan evaporation is the amount of water evaporated during a period (mm/day) with an unlimited supply of water (potential evaporation). It is a function of surface and air temperatures, insolation, and wind, all of which affect water-vapor concentrations immediately above the evaporating surface (Chong-yu et al., 2006). On the other hand, actual evapotranspiration is a function of temperature, wind, humidity and net radiation. It can be concluded that there is the relationship between the pan evaporation and actual evapotranspiration. (Humphreys et al., 1994; Grismer et al., 2002; Marco, 2002) Chong-yu et al. (2006) presents that the decreasing trend detected in the pan evaporation and actual evapotranspiration can be attributed to the significant decreasing trends in the net radiation and in the wind speed. Also, it can be attributed to the significant increasing trend in the air temperature.

7. Result

Since there are three main parts for the calculation of this study, there are three main parts of the result that are the spatial temperature, the spatial actual evapotranspiration, and the relation between temperature and actual evapotranspiration. The results for each part are presented as following.

7.1 Spatial temperature

The spatial distributions of temperature calculated by using Landsat 5 TM satellite images are presented from Figure 2 to Figure 4 (Kosa, 2009). These figures can be presented that the mean temperatures from Figure 2 to Figure 4 are 297.34, 295.74 and 296.25 °K, respectively. On the one hand, the minimum temperatures from these three figures are 283.21, 278.93 and 284.02 °K, respectively while the maximum temperatures from these three figures are 308.62, 313.63 and 310.65 °K, respectively.

7.2 Spatial actual evapotranspiration

The spatial distributions of actual evapotranspiration calculated by using Landsat 5 TM satellite images and SEBAL are presented from Figure 5 to Figure 7 (Kosa, 2009). These figure cab be presented that the mean actual evapotranspiration from these three figures are 3.67, 4.50 and 4.26 mm, respectively.

7.3 Relation between temperature and actual evapotranspiration

After the spatial temperature and spatial actual evapotranspiration were calculated as show in Figure 2 to Figure 7, the temperature and actual evapotranspiration were plotted as present in Figure 8 and 9 (Kosa, 2009). These figures present that equations explained the relation between the temperature and actual evapotranspiration are consisted of $y = -0.028x^2 + 17.069x - 2593.2 \ (R^2 = 0.987)$ and $y = -0.028x^2 + 1.7608x - 22.932 \ (R^2 = 0.987)$ where y is the actual evapotranspiration (mm/day) and x is the temperature in the unit of °K and °C, respectively.
Fig. 2. The surface temperature on November 13, 2006

Fig. 3. The surface temperature on December 15, 2006

Fig. 4. The surface temperature on January 16, 2007
Fig. 5. The actual evapotranspiration on November 13, 2006

Fig. 6. The actual evapotranspiration on December 15, 2006

Fig. 7. The actual evapotranspiration on January 16, 2007
8. Conclusion and recommendation

As above result, it can be concluded that the mean temperature and the mean actual evapotranspiration are 296.44 °K (23.44 °C) and 4.14 mm, respectively. The relationship between the temperature (°K and °C) and actual evapotranspiration (mm/day) is in the format of the polynomial equation. For the temperature in Kelvin, an equation is \(y = -0.028x^2 + 17.069x - 2593.2 \) and for the temperature in Celsius, an equation is \(y = -0.028x^2 + 1.7608x - 22.932 \).

The spatial temperature and spatial actual evapotranspiration during November 2006 to January 2007 that are the result are in the condition of both dry season and clear sky. Also, the relationship between temperature and actual evapotranspiration is a result. These
results are useful for irrigation project and water management. For spatial temperature, it presents temperature for each area. Since temperature relates to many weather data, temperature can imply the characteristic of other weather data. For example, high temperature is included low humidity but high evaporation can be occurred in the condition of high temperature. For spatial actual evapotranspiration, it can be used to present daily actual evapotranspiration. This daily actual evapotranspiration leads to the planning of water management in each area. Then, it is easy to manage water by irrigation project. For the relationship between temperature and actual evapotranspiration, it can be used to estimate actual evapotranspiration when temperature is not unknown.

9. Acknowledgements

The authors are grateful to the Suranaree University of Technology for funding, facilities and equipment provided. Satellite images from the Geo-informatics and Space Technology Development Agency (Public Organization) are appreciated.

10. References

The Effect of Temperature on Actual Evapotranspiration based on Landsat 5 TM Satellite Imagery

Evapotranspiration is a very complex phenomenon, comprising different aspects and processes (hydrological, meteorological, physiological, soil, plant and others). Farmers, agriculture advisers, extension services, hydrologists, agrometeorologists, water management specialists and many others are facing the problem of evapotranspiration. This book is dedicated to further understanding of the evapotranspiration problems, presenting a broad body of experience, by reporting different views of the authors and the results of their studies. It covers aspects from understandings and concepts of evapotranspiration, through methodology of calculating and measuring, to applications in different fields, in which evapotranspiration is an important factor. The book will be of benefit to scientists, engineers and managers involved in problems related to meteorology, climatology, hydrology, geography, agronomy and agricultural water management. We hope they will find useful material in this collection of papers.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:
