Stability of Linear Continuous Singular and Discrete Descriptor Time Delayed Systems

Dragutin Lj. Debeljković1 and Tamara Nestorović2
1University of Belgrade, Faculty of Mechanical Engineering, Serbia
2Ruhr-University of Bochum, Germany

1. Introduction

The problem of investigation of time delay systems has been exploited over many years. Time delay is very often encountered in various technical systems, such as electric, pneumatic and hydraulic networks, chemical processes, long transmission lines, etc. The existence of pure time lag, regardless if it is present in the control or/and the state, may cause undesirable system transient response, or even instability. Consequently, the problem of stability analysis for this class of systems has been one of the main interests for many researchers. In general, the introduction of time delay factors makes the analysis much more complicated.

When the general time delay systems are considered, in the existing stability criteria, mainly two ways of approach have been adopted. Namely, one direction is to contrive the stability condition which does not include the information on the delay, and the other is the method which takes it into account. The former case is often called the delay-independent criteria and generally provides simple algebraic conditions. In that sense the question of their stability deserves great attention. We must emphasize that there are a lot of systems that have the phenomena of time delay and singular characteristics simultaneously. We denote such systems as the singular (descriptor) differential (difference) systems with time delay. These systems have many special properties. If we want to describe them more exactly, to design them more accurately and to control them more effectively, we must pay tremendous endeavor to investigate them, but that is obviously a very difficult work. In recent references authors have discussed such systems and got some consequences. But in the study of such systems, there are still many problems to be considered.

2. Time delay systems

2.1 Continuous time delay systems

2.1.1 Continuous time delay systems – stability in the sense of Lyapunov

The application of Lyapunov’s direct method (LDM) is well exposed in a number of very well known references. For the sake of brevity contributions in this field are omitted here. The part of only interesting paper of (Tissir & Hnamed 1996), in the context of these investigations, will be presented later.
2.1.2 Continuous time delay systems – stability over finite time interval

A linear, multivariable time-delay system can be represented by differential equation:

\[\dot{x}(t) = A_0 x(t) + A_1 x(t - \tau), \quad (1) \]

and with associated function of initial state:

\[x(t) = \psi_x(t), \quad -\tau \leq t \leq 0. \quad (2) \]

Equation (1) is referred to as homogenous, \(x(t) \in \mathbb{R}^n \) is a state space vector, \(A_0, A_1 \), are constant system matrices of appropriate dimensions, and \(\tau \) is pure time delay, \(\tau = \text{const.} (\tau > 0) \).

Dynamical behavior of the system (1) with initial functions (2) is defined over continuous time interval \(\mathcal{I} = \{ t_0, t_0 + T \} \), where quantity \(T \) may be either a positive real number or symbol \(+\infty \), so finite time stability and practical stability can be treated simultaneously. It is obvious that \(\mathcal{I} \in \mathbb{R} \). Time invariant sets, used as bounds of system trajectories, satisfy the assumptions stated in the previous chapter (section 2.2).

STABILITY DEFINITIONS

In the context of finite or practical stability for particular class of nonlinear singularly perturbed multiple time delay systems various results were, for the first time, obtained in Feng, Hunsarg (1996). It seems that their definitions are very similar to those in Weiss, Infante (1965, 1967), clearly addopted to time delay systems. It should be noticed that those definitions are significantly different from definition presented by the autors of this chapter.

In the context of finite time and practical stability for linear continuous time delay systems, various results were first obtained in (Debeljkovic et al. 1997.a, 1997.b, 1997.c, 1997.d), (Nenadic et al. 1997).

In the paper of (Debeljkovic et al. 1997.a) and (Nenadic et al. 1997) some basic results of the area of finite time and practical stability were extended to the particular class of linear continuous time delay systems. Stability sufficient conditions dependent on delay, expressed in terms of time delay fundamental system matrix, have been derived. Also, in the circumstances when it is possible to establish the suitable connection between fundamental matrices of linear time delay and non-delay systems, presented results enable an efficient procedure for testing practical as well the finite time stability of time delay system.

In (Debeljkovic et al. 1997.c) this problem has been solved for forced time delay system.

Another approach, based on very well known Bellman-Gronwall Lemma, was applied in (Debeljkovic et al. 1998.c), to provide new, more efficient sufficient delay-dependent conditions for checking finite and practical stability of continuous systems with state delay. Collection of all previous results and contributions was presented in paper (Debeljkovic et al. 1999) with overall comments and slightly modified Bellman-Gronwall approach.
Finally, modified Bellman-Gronwall principle, has been extended to the particular class of continuous non-autonomous time delayed systems operating over the finite time interval, (Debeljkovic et al. 2000.a, 2000.b, 2000.c).

Definition 2.1.2.1 Time delay system (1-2) is stable with respect to \(\{\alpha, \beta, -\tau, T, \|x\|\} \), \(\alpha \leq \beta \), if for any trajectory \(x(t) \) condition \(\|x_0\| < \alpha \) implies \(\|x(t)\| < \beta \) \(\forall t \in [-\Delta, \ T] \), \(\Delta = \tau_{\text{max}} \), (Feng, Hunsarg 1996).

Definition 2.1.2.2 Time delay system (1-2) is stable with respect to \(\{\alpha, \beta, -\tau, T, \|x\|\} \), \(\gamma < \alpha < \beta \), if for any trajectory \(x(t) \) condition \(\|x_0\| < \alpha \), implies (Feng, Hunsarg 1996):

i. Stability w.r.t. \(\{\alpha, \beta, -\tau, T, \|x\|\} \),

ii. There exist \(t^* \in [0, T] \) such that \(\|x(t)\| < \gamma \) for all \(\forall t \in [0, T] \).

Definition 2.1.2.3 System (1) satisfying initial condition (2) is finite time stable with respect to \(\{\zeta(t), \beta, \tau, \mathcal{S} \} \) if and only if \(\|\psi_s(t)\| < \zeta(t) \), implies \(\|x(t)\| < \beta \), \(t \in \mathcal{S} \), \(\zeta(t) \) being scalar function with the property \(0 < \zeta(t) \leq \alpha \), \(-\tau \leq t \leq 0 \), \(-\tau \leq t \leq 0 \), where \(\alpha \) is a real positive number and \(\beta \in \mathbb{R} \) and \(\beta > \alpha \), (Debeljkovic et al. 1997.a, 1997.b, 1997.c, 1997.d), (Nenadic et al. 1997).

![Fig. 2.1 Illustration of preceding definition](image1)

Definition 2.1.2.4 System (1) satisfying initial condition (2) is finite time stable with respect to \(\{\zeta(t), \beta, \tau, \mathcal{S} \} \) if \(\psi_s(t) \in \mathcal{S}_\beta \), \(\forall t \in [-\tau, 0] \), implies \(x(t_0, t, x_0) \in \mathcal{S}_\beta \), \(\forall t \in [0, T] \) (Debeljkovic et al. 1997.b, 1997.c).

Definition 2.1.2.5 System (1) satisfying initial condition (2) is finite time stable with respect to \(\{\alpha, \beta, \tau, \mathcal{S} \} \) if \(\psi_s(t) \in \mathcal{S}_\beta \), \(\forall t \in [-\tau, 0] \), implies \(x(t, t_0, x_0, u(t)) \in \mathcal{S}_\beta \), \(\forall t \in \mathcal{S} \), (Debeljkovic et al. 1997.b, 1997.c).

Definition 2.1.2.6 System (1) with initial function (2), is finite time stable with respect to \(\{t_0, \mathcal{S}_\alpha, \mathcal{S}_\beta\} \), iff \(\|x(t_0)\|^2 = \|x_0\|^2 < \alpha \), implies \(\|x(t)\|^2 < \beta \), \(\forall t \in \mathcal{S} \), (Debeljkovic et al. 2010).

Definition 2.1.2.7 System (1) with initial function (2), is attractive practically stable with respect to \(\{t_0, \mathcal{S}_\alpha, \mathcal{S}_\beta\} \), iff \(\|x(t_0)\|^2 = \|x_0\|^2 < \alpha \), implies: \(\|x(t)\|_p^2 < \beta \), \(\forall t \in \mathcal{S} \), with property that: \(\lim_{k \to \infty} \|x(t)\|_p^2 \to 0 \), (Debeljkovic et al. 2010).
STABILITY THEOREMS - Dependent delay stability conditions

Theorem 2.1.2.1 System (1) with the initial function (2) is finite time stable with respect to \(\{\alpha, \beta, \tau, \mathcal{A}\} \) if the following condition is satisfied

\[
||\Phi(t)||_2 < \frac{\sqrt{\beta/\alpha}}{1 + \tau ||A_1||_2}, \quad \forall t \in [0, T]
\]

(3)

\(||(\cdot)|| \) is Euclidean norm and \(\Phi(t) \) is fundamental matrix of system (1), (Nenadic et al. 1997), (Debeljkovic et al. 1997.a).

When \(\tau = 0 \) or \(||A_1|| = 0 \), the problem is reduced to the case of the ordinary linear systems, (Angelo 1974).

Theorem 2.1.2.2 System (1) with initial function (2) is finite time stable w.r.t. \(\{\alpha, \beta, \tau, T\} \) if the following condition is satisfied:

\[
e^{\mu(A_0)t} < \frac{\sqrt{\beta/\alpha}}{1 + \tau ||A_1||_2}, \quad \forall t \in [0, T],
\]

(4)

where \(||(\cdot)|| \) denotes Euclidean norm, (Debeljkovic et al. 1997.b).

Theorem 2.1.2.3 System (1) with the initial function (2) is finite time stable with respect to \(\{\alpha, \beta, \tau, T, \mu(A_0) \neq 0\} \) if the following condition is satisfied:

\[
e^{\mu(A_0)t} < \frac{\beta/\alpha}{1 + \mu^2(A_0):||A_1||_2 \left(1 - e^{-\mu(A_0)T}\right)}, \quad \forall t \in [0, T],
\]

(5)

Theorem 2.1.2.4 System (1) with the initial function (2) is finite time stable with respect to \(\{\sqrt{\alpha}, \sqrt{\beta}, \tau, T, \mu(A_0) = 0\} \) if the following condition is satisfied:

\[
1 + \tau ||A_1||_2 < \sqrt{\beta/\alpha}, \quad \forall t \in [0, T],
\]

(6)

Results that will be presented in the sequel enable to check finite time stability of the systems to be considered, namely the system given by (1) and (2), without finding the fundamental matrix or corresponding matrix measure.

Equation (2) can be rewritten in it’s general form as:

\[
x(t_0 + \theta) = \psi_x(\theta), \quad \psi_x(\theta) \in C[-\tau, 0], \quad -\tau \leq \theta \leq 0,
\]

(7)

where \(t_0 \) is the initial time of observation of the system (1) and \(C[-\tau, 0] \) is a Banach space of continuous functions over a time interval of length \(\tau \), mapping the interval \([(t - \tau), t] \) into \(\mathbb{R}^n \) with the norm defined in the following manner:

\[
||\psi||_{C} = \max_{-\tau \leq \theta \leq 0} ||\psi(\theta)||.
\]

(8)
It is assumed that the usual smoothness conditions are present so that there is no difficulty with questions of existence, uniqueness, and continuity of solutions with respect to initial data. Moreover one can write:

\[x(t_0 + \vartheta) = \psi_x(\vartheta), \] (9)

as well as:

\[\dot{x}(t_0) = f(t_0, \psi_x(\vartheta)). \] (10)

Theorem 2.1.2.5 System given by (1) with initial function (2) is finite time stable w.r.t. \(\{\alpha, \beta, t_0, T\} \) if the following condition is satisfied:

\[\left(1 + (t - t_0)\sigma_{\text{max}}\right)^2 e^{2(t-t_0)\sigma_{\text{max}}} < \frac{\beta}{\alpha}, \quad \forall t \in \mathbb{I}, \] (11)

\(\sigma_{\text{max}}(\cdot) \) being the largest singular value of matrix (\(\cdot \)), namely

\[\sigma_{\text{max}} = \sigma_{\text{max}}(A_0) + \sigma_{\text{max}}(A_1). \] (12)

(*Debeljkovic et al.* 1998.c) and (*Lazarevic et al.* 2000).

Remark 2.1.2.1 In the case when in the *Theorem 2.1.2.5* \(A_1 = 0 \), e.g. \(A_1 \) is null matrix, we have the result similar to that presented in (*Angelo* 1974).

Before presenting our crucial result, we need some discussion and explanations, as well some additional results.

For the sake of completeness, we present the following result (*Lee & Dianat* 1981).

Lemma 2.1.2.1 Let us consider the system (1) and let \(P_1(t) \) be characteristic matrix of dimension \((n \times n) \), continuous and differentiable over time interval \([0, \tau] \) and 0 elsewhere, and a set:

\[V(x_t, \tau) = \left(x(t) + \int_0^h P_1(\tau) x(t - \tau) d\tau \right) P_0 \left(x(t) + \int_0^h P_1(\tau) x(t - \tau) d\tau \right), \] (13)

where \(P_0 = P_0^* > 0 \) is Hermitian matrix and \(x_1(\vartheta) = x(t + \vartheta), \quad \vartheta \in [-\tau, 0] \).

If:

\[P_0 \left(A_0 + P_1(0) \right) + \left(A_0 + P_1(0) \right)^* P_0 = -Q, \] (14)

\[P_1(\kappa) = \left(A_0 + P_1(0) \right) P_1(\kappa), \quad 0 \leq \kappa \leq \tau, \] (15)

where \(P_1(\tau) = A_1 \) and \(Q = Q^* > 0 \) is Hermitian matrix, then (*Lee & Dianat* 1981):

\[\dot{V}(x_t, \tau) = \frac{d}{dt} V(x_t, \tau) < 0. \] (16)
Equation (13) defines Lyapunov’s function for the system (1) and \(*\) denotes conjugate transpose of matrix.

In the paper (Lee, Dianat 1981) it is emphasized that the key to the success in the construction of a Lyapunov function corresponding to the system (1) is the existence of **at least one solution** \(P_1(t) \) of (15) with boundary condition \(P_1(\tau) = A_1 \).

In other words, it is required that the nonlinear algebraic matrix equation:

\[
e^{(A_0+P_1(0))\tau}P_1(0) = A_1,
\]

has **at least one** solution for \(P_1(0) \).

Theorem 2.1.2.6 Let the system be described by (1). If for any given positive definite Hermitian matrix \(Q \) there exists a positive definite Hermitian matrix \(P_0 \), such that:

\[
P_0\left(A_0 + P_1(0)\right) + \left(A_0 + P_1(0)\right)^*P + Q = 0,
\]

where for \(\theta \in [0, \tau] \) and \(P_1(\theta) \) satisfies:

\[
\dot{P}_1(\theta) = \left(A_0 + P_1(0)\right)P_1(\theta),
\]

with boundary condition \(P_1(\tau) = A_1 \) and \(P_1(\tau) = 0 \) elsewhere, then the system is asymptotically stable, (Lee, Dianat 1981).

Theorem 2.1.2.7 Let the system be described by (1) and furthermore, let (17) have solution for \(P_1(0) \), which is nonsingular. Then, system (1) is asymptotically stable if (19) of **Theorem 2.1.2.6** is satisfied, (Lee, Dianat 1981).

Necessary and sufficient conditions for the stability of the system are derived by Lyapunov’s direct method through construction of the corresponding “energy” function. This function is known to exist if a solution \(P_1(0) \) of the algebraic nonlinear matrix equation

\[
A_1 = \exp\{A_0 + P_1(0)\}\cdot P_1(0)
\]

can be determined.

It is asserted, (Lee, Dianat 1981), that derivative sign of a Lyapunov function (**Lemma 2.1.2.1**) and thereby asymptotic stability of the system (**Theorem 2.1.2.6** and **Theorem 2.1.2.7**) can be determined based on the knowledge of **only one or any**, solution of the particular nonlinear matrix equation.

We now demonstrate that **Lemma 2.1.2.1** should be improved since it does not take into account all possible solutions for (17). The counterexample, based on original approach and supported by the Lambert function application, is given in (Stojanovic & Debeljkovic 2006), (Debeljkovic & Stojanovic 2008).

The final results, that we need in the sequel, should be:

Lemma 2.1.2.2 Suppose that there exist(s) the solution(s) \(P_1(0) \) of (19) and let the Lyapunov’s function be (13). Then, \(\dot{V}(x, \tau) < 0 \) **if and only if** for any matrix \(Q = Q^* > 0 \) there exists matrix \(P_0 = P_0^* > 0 \) such that (5) holds for all solution(s) \(P_1(0) \), (Stojanovic & Debeljkovic 2006) and (Debeljkovic & Stojanovic 2008).
Remark 2.1.2.1 The necessary condition of Lemma 2.1.2.2 follows directly from the proof of Theorem 2 in (Lee & Dianat 1981) and (Stojanovic & Debeljkovic 2006).

Theorem 2.1.2.8 Suppose that there exist(s) the solution(s) of $P_1(0)$ of (17). Then, the system (1) is asymptotically stable if for any matrix $Q = Q^* > 0$ there exists matrix $P_0 = P_0^* > 0$ such that (14) holds for all solutions $P_1(0)$ of (17), (Stojanovic & Debeljkovic 2006) and (Debeljkovic & Stojanovic 2008).

Remark 2.1.2.2 Statements Lemma 2.1.2.2. and Theorems 2.1.2.7 and Theorems 2.1.2.8 require that corresponding conditions are fulfilled for any solution $P_1(0)$ of (17).

These matrix conditions are analogous to the following known scalar condition of asymptotic stability.

System (1) is asymptotically stable iff the condition $\text{Re}(s) < 0$ holds for all solutions s of:

$$f(s) = \det(sI - A_0 - e^{-st}A_1) = 0.$$ (20)

Now, we can present our main result, concerning practical stability of system (1).

Theorem 2.1.2.9 System (1) with initial function (2), is attractive practically stable with respect to $\{t_0, \mathcal{J}, \alpha, \beta, ||\cdot||^2\}$, $\alpha < \beta$, if there exist a positive real number q, $q > 1$, such that:

$$\|x(t + \tau)\|_{p_0} \leq \sup_{\delta \in [-\tau, 0]} \|x(t + \delta)\|_{p_0} < q \|x(t)\|_{p_0}, \quad q > 1, \quad t \geq t_0, \quad \forall t \in \mathcal{J}, \quad \forall x(t) \in \mathcal{S}_\beta,$$ (21)

and if for any matrix $Q = Q^* > 0$ there exists matrix $P_0 = P_0^* > 0$ such that (14) holds for all solutions $P_1(0)$ of (17) and if the following conditions are satisfied (Debeljkovic et al. 2011.b):

$$e^{\bar{V}_{\max}(\bar{t})} < \frac{\beta}{\alpha}, \quad \forall t \in \mathcal{J},$$ (22)

where:

$$\bar{V}_{\max}(\bar{t}) = \max \left\{ V\left(x(t)\right) : x(t) = 1 \right\},$$

Proof. Define tentative aggregation function, as:

$$V(x, \tau) = x^T(t)P_0x(t) + \int_0^\tau \int_0^\tau x^T(t - \nu)P_1^T(\nu)P_0P_1(\eta)x(t - \eta)d\nu d\eta$$

$$+ x^T(t)P_0\int_0^\tau P_1(\eta)x(t - \eta)d\eta + \int_0^\tau x^T(t - \eta)P_1(\eta)d\eta$$ (24)

The total derivative $\dot{V}(t, x(t))$ along the trajectories of the system, yields\(^1\)

\(^1\) Under conditions of Lemma 2.1.2.1.
\[\dot{V}(x_t, \tau) = \left[x(t) + \int_0^\tau P_1(\eta)x(t-\eta)d\eta \right]^T(-Q)x(t) + \int_0^\tau P_1(\eta)x(t-\eta)d\eta, \]
\((25) \)

and since, \((-Q)\) is negative definite and obviously \(\dot{V}(x_t, \tau) < 0\), time delay system (1) possesses atractivity property.

Furthermore, it is obvious that

\[
\frac{dV(x_t, \tau)}{dt} = \frac{d}{dt}(x^T(t)P_0x(t)) + \frac{d}{dt}\left(\int_0^\tau x^T(t-\nu)P_0^TP_0x(t-\eta)d\eta \right)
\]

\[
+ x^T(t)P_1\int_0^\tau P_1(\eta)x(t-\eta)d\eta + \int_0^\tau x^T(t-\eta)P_1(\eta)d\eta
\]

\((26) \)

so, the standard procedure, leads to:

\[
\frac{d}{dt}(x^T(t)P_0x(t)) = x^T(t)(A_0^TP_0 + P_0A_0)x(t) + 2x^T(t)P_0A_1x(t-\tau), \text{ or }
\]

\((27) \)

\[
\frac{d}{dt}(x^T(t)P_0x(t)) = x^T(t)(A_0^TP_0 + P_0A_0 + Q)x(t) + 2x^T(t)P_0A_1x(t-\tau) - x^T(t)Qx(t)
\]

\((28) \)

From the fact that the time delay system under consideration, upon the statement of the \textit{Theorem}, is asymptotically stable \(2\), follows:

\[
\frac{d}{dt}(x^T(t)P_0x(t)) = -x^T(t)Qx(t) + 2x^T(t)P_0A_1x(t-\tau),
\]

\((29) \)

and using very well known inequality \(3\), with particular choice:

\[
x^T(t)\Gamma x(t) = x^T(t)P_0x^T(t) > 0, \quad \forall t \in \mathcal{T},
\]

\((30) \)

and the fact that:

\[
x^T(t)Qx(t) > 0, \quad \forall t \in \mathcal{T},
\]

\((31) \)

is positive definite quadratic form, one can get:

\[
\frac{d}{dt}(x^T(t)P_0x(t)) = 2x^T(t)P_0A_1x(t-\tau)
\]

\[
\leq x^T(t)P_0A_1P_0^{-1}A_0^TP_0x(t) + x^T(t-\tau)P_0x(t-\tau)
\]

\((32) \)

and using (21), \((Su & Huang 1992), (Xu & Liu 1994)\) and \((Mao 1997)\), clearly (32) reduces to:

\(2\) Clarify \textit{Theorem} 2.1.2.8.

\(3\) \(2u^T(t)v(t-\tau) \leq u^T(t)\Gamma^{-1}u(t) + v^T(t-\tau)\Gamma v(t-\tau), \quad \Gamma = \Gamma^T > 0.\)
\[
\frac{d}{dt} \left(x^T(t) P_0(x(t)) \right) < x^T(t) \left(P_0 A_1 P_0^{-1} A_1^T P_0 + q^2 P \right) x(t),
\]

or, using (22), one can get:

\[
\frac{d}{dt} \left(x^T(t) P_0(x(t)) \right) < \lambda_{\text{max}}(\bar{Y}) x^T(t) P_0(x(t)),
\]

or:

\[
\int_{t_0}^{t} \frac{d}{dt} \left(x^T(t) P_0(x(t)) \right) dt < \int_{t_0}^{t} \lambda_{\text{max}}(\bar{Y}) dt,
\]

and:

\[
x^T(t) P_0(x(t)) < x^T(t_0) P_0(x(t_0)) e^{\lambda_{\text{max}}(\bar{Y})(t-t_0)}.
\]

Finally, if one applies the first condition, given in Definition 2.1.2.7, and then:

\[
x^T(t) P_0(x(t)) < \alpha e^{\lambda_{\text{max}}(\bar{Y})(t-t_0)},
\]

and by applying the basic condition (22) of the Theorem 2.1.2.9, one can get

\[
x^T(t) P_0(x(t)) < \alpha \cdot \frac{\beta}{\alpha} < \beta, \quad \forall t \in \mathcal{T}. \quad \text{Q.E.D.}
\]

STABILITY THEOREMS - Independent delay stability conditions

Theorem 2.1.2.10 Time delayed system (1), is finite time stable w.r.t. \(\{ t_0, 3, \alpha, \beta, \| \cdot \|^2 \} \), \(\alpha < \beta \), if there exist a positive real number \(q, \ q > 1 \), such that:

\[
\| x(t+\tau) \| \leq \sup_{\eta \in [-\tau,0]} \| x(t+\eta) \| < q \| x(t) \|, \quad q > 1, \quad t \geq t_0, \forall t \in \mathcal{T}, \forall x(t) \in \mathcal{S}_\beta,
\]

if the following condition is satisfied (Debeljkovic et al. 2010):

\[
e^{\lambda_{\text{max}}(\Psi)(t-t_0)} < \frac{\beta}{\alpha}, \quad \forall t \in \mathcal{T},
\]

where:

\[
\lambda_{\text{max}}(\Psi) = \lambda_{\text{max}} \left(A_0^T + A_0 + A_1 A_1^T + q^2 I \right).
\]

Proof. Define tentative aggregation function as:

\[
V(x(t)) = x^T(t) x(t) + \int_{t-\tau}^{t} x^T(\theta) x(\theta) d\theta.
\]
The total derivative $\dot{V}(t,x(t))$ along the trajectories of the system, yields:

$$\dot{V}(t,x(t)) = \frac{d}{dt} \left(x^T(t)x(t) \right) + \int_{t-\tau}^{t} x^T(\theta)x(\theta)d\theta$$

$$= x^T(t) \left(A_0 + A_0 \right) x(t) + 2x^T(t)A_1x(t-\tau) + x^T(t)x(t) + x^T(t-\tau)x(t-\tau).$$

From (43), it is obvious:

$$\frac{d}{dt} \left(x^T(t)x(t) \right) = x^T(t) \left(A_0 + A_0 \right) x(t) + 2x^T(t)A_1x(t-\tau),$$

and based on the previous inequality and with the particular choice:

$$x^T(t)Gx(t) = x^T(t)x(t) > 0, \quad \forall t \in \mathbb{R}, \quad \text{so that}$$

$$\frac{d}{dt} \left(x^T(t)x(t) \right) \leq x^T(t) \left(A_0^T + A_0 \right) x(t) + x^T(t)A_1x(t) + x^T(t-\tau)Ix(t-\tau),$$

Based on (39), (Su & Huang 1992), (Xu & Liu 1994) and (Mao 1997), it is clear that (46) reduces to:

$$\frac{d}{dt} \left(x^T(t)x(t) \right) < x^T(t) \left(A_0^T + A_0 + A_1A_1^T + q^2I \right) x(t) < \lambda_{\max}(\Pi)x^T(t)x(t),$$

where matrix Π is defined by (41). From (47) one can get:

$$\int_{t_0}^{t} \frac{d\left(x^T(t)x(t) \right)}{x^T(t)x(t)} < \int_{t_0}^{t} \lambda_{\max}(\Pi)dt,$$

and:

$$x^T(t)x(t) < x^T(t_0)x(t_0)e^{\lambda_{\max}(\Pi)(t-t_0)} < \alpha \cdot e^{\lambda_{\max}(\Pi)(t-t_0)} < \alpha \cdot \frac{\beta}{\alpha} < \beta, \quad \forall t \in \mathbb{R}.$$ (49)

under the identical technique from the previous proof of Theorem 2.1.2.9. Q.E.D.

2.2 Discrete time delay systems
2.2.1 Discrete time delay systems – stability in the sense of Lyapunov

ASYMPTOTIC STABILITY-APPROACH BASED ON THE RESULTS OF TISSIR AND HMAMED4

In particular case we are concerned with a linear, autonomous, multivariable discrete time delay system in the form:

$$x(k+1) = A_0x(k) + A_1x(k-1),$$

4 (Tissir & Hmamed 1996).
The equation (50) is referred to as homogenous or the unforced state equation, \(x(k) \) is the state vector, \(A_0 \) and \(A_1 \) are constant system matrices of appropriate dimensions.

Theorem 2.2.1.1. System (50) is asymptotically stable if:

\[
\|A_0\| + \|A_1\| < 1 ,
\]

holds, (Mori et al. 1981).

Theorem 2.2.1.2. System (50) is asymptotically stable, independent of delay, if:

\[
\|A_1\| < \frac{\sigma_{\min} \left(Q^{\frac{1}{2}} \right)}{\sigma_{\max} \left(Q^{-\frac{1}{2}} A_0^T P \right)},
\]

where \(P \) is the solution of the discrete Lyapunov matrix equation:

\[
A_0^T P A_0 - P = -\left(2Q + A_1^T P A_1 \right),
\]

where \(\sigma_{\max}(\cdot) \) and \(\sigma_{\min}(\cdot) \) are the maximum and minimum singular values of the matrix (\(\cdot \)), (Debeljkovic et al. 2004.a, 2004.b, 2004.d, 2005.a).

Theorem 2.2.1.3 Suppose the matrix \(Q - A_1^T P A_1 \) is regular. System (50) is asymptotically stable, independent of delay, if:

\[
\|A_1\| < \frac{\sigma_{\min} \left(Q - A_1^T P A_1 \right)^{\frac{1}{2}}}{\sigma_{\max} \left(Q^{-\frac{1}{2}} A_0^T P \right)},
\]

where \(P \) is the solution of the discrete Lyapunov matrix equation:

\[
A_0^T P A_0 - P = -2Q ,
\]

where \(\sigma_{\max}(\cdot) \) and \(\sigma_{\min}(\cdot) \) are the maximum and minimum singular values of the matrix (\(\cdot \)), (Debeljkovic et al. 2004.c, 2004.d, 2005.a, 2005.b).

ASYMPTOTIC STABILITY- LYAPUNOV BASED APPROACH

A linear, autonomous, multivariable linear discrete time-delay system can be represented by the difference equation:

\[
x(k + 1) = \sum_{j=0}^{N} A_j x(k - h_j), \quad x(\vartheta) = \psi(\vartheta), \quad \vartheta \in \{-h_N, -h_N + 1, \ldots, 0\} \triangleq \Delta ,
\]

where \(x(k) \in \mathbb{R}^n \), \(A_j \in \mathbb{R}^{n \times n} \), \(0 = h_0 < h_1 < h_2 < \ldots < h_N \) - are integers and represent the systems time delays. Let \(V(x(k)) : \mathbb{R}^n \to \mathbb{R} \), so that \(V(x(k)) \) is bounded for, and for which \(\|x(k)\| \) is also bounded.
Lemma 2.2.1.1 For any two matrices of the same dimensions F and G and for some positive constant ε the following statement is true (Wang & Mau 1997):

$$
(F + G)^T (F + G) \leq (1 + \varepsilon)F^T F + (1 + \varepsilon^{-1})G^T G.
$$

(57)

Theorem 2.2.1.4 Suppose that A_0 is not null matrix. If for any given matrix $Q = Q^T > 0$ there exists matrix $P = P^T > 0$ such that the following matrix equation is fulfilled:

$$
(1 + \varepsilon_{\min})A_0^T PA_0 + (1 + \varepsilon_{\min}^{-1})A_1^T PA_1 - P = -Q,
$$

(58)

where:

$$
\varepsilon_{\min} = \frac{\|A_1\|_2}{\|A_0\|_2},
$$

(59)

then, system (56) is asymptotically stable, (Stojanovic & Debeljko 2005.b).

Corollary 2.2.1.1 If for any given matrix $Q = Q^T > 0$ there exists matrix $P = P^T > 0$ being the solution of the following Lyapunov matrix equation:

$$
A_0^T PA_0 - P = -\frac{\varepsilon_{\min}}{1 + \varepsilon_{\min}}Q,
$$

(60)

where ε_{\min} is defined by (59) and if the following condition is satisfied:

$$
\sigma_{\max}(A_0) + \sigma_{\max}(A_1) < \frac{\lambda_{\min}(Q - P)}{\sigma_{\max}(A_0)\lambda_{\max}(P)},
$$

(61)

then, system (59) is asymptotically stable, (Stojanovic & Debeljko 2005.b).

Corollary 2.2.1.2 If for any given matrix $Q = Q^T > 0$ there exists matrix $P = P^T > 0$ being solution of the following matrix equation:

$$
(1 + \varepsilon_{\min})A_0^T PA_0 - P = -\varepsilon_{\min}Q,
$$

(62)

where ε_{\min} is defined by (59), and if the following condition is satisfied, too:

$$
\sigma_{\max}(A_0) + \sigma_{\max}(A_1) < \frac{\lambda_{\min}(Q)}{\sigma_{\max}(A_0)\lambda_{\max}(P)},
$$

(63)

then, system (56) is asymptotically stable, (Stojanovic & Debeljko 2005.b).

Theorem 2.2.1.5 If for any given matrix $Q = Q^T > 0$ there exists matrix $P = P^T > 0$ such that the following matrix equation is fulfilled:

$$
2A_0^T PA_0 + 2A_1^T PA_1 - P = -Q,
$$

(64)

then, system (56) is asymptotically stable, (Stojanovic & Debeljko 2006.a).

Corollary 2.2.1.3 System (56) is asymptotically stable, independent of delay, if:
\[
\sigma_{\max}^2(A_1) < \frac{\lambda_{\min}(2Q - P)}{2\sigma_{\max}(P^T)} ,
\]

where, for any given matrix \(Q = Q^T > 0 \) there exists matrix \(P = P^T > 0 \) being the solution of the following Lyapunov matrix equation (Stojanovic & Debeljkovic 2006.a):

\[
A_0^T P A_0 - P = -Q .
\]

Corollary 2.2.1.4 System (56) is asymptotically stable, independent of delay, if:

\[
\sigma_{\max}^2(A_1) < \frac{\lambda_{\min}(Q)}{2\sigma_{\max}(P^T)} ,
\]

where, for any given matrix \(Q = Q^T > 0 \) there exists matrix \(P = P^T > 0 \) being the solution of the following Lyapunov matrix equation (Stojanovic & Debeljkovic 2006.a):

\[
2A_0^T P A_0 - P = -Q .
\]

2.2.2 Discrete time delay systems – Stability over finite time interval

As far as we know the only result, considering and investigating the problem of non-Lyapunov analysis of linear discrete time delay systems, is one that has been mentioned in the introduction, e.g. (Debeljkovic & Aleksendric 2003), where this problem has been considered for the first time.

Investigating the system stability throughout the discrete fundamental matrix is very cumbersome, so there is a need to find some more efficient expressions that should be based on calculation appropriate eigenvalues or norm of appropriate systems matrices as it has been done in continuous case.

SYSTEM DESCRIPTION

Consider a linear discrete system with state delay, described by:

\[
x(k + 1) = A_0 x(k) + A_1 x(k - 1),
\]

with known vector valued function of initial conditions:

\[
x(k_0) = \psi(k_0), \quad -1 \leq k_0 \leq 0 ,
\]

where \(x(k) \in \mathbb{R}^n \) is a state vector and with constant matrices \(A_0 \) and \(A_1 \) of appropriate dimensions. Time delay is constant and equals one. For some other purposes, the state delay equation can be represented in the following way:

\[
x(k + 1) = A_0 x(k) + \sum_{j=1}^{M} A_j x(k - h_j) ,
\]
\[x(\vartheta) = \psi(\vartheta), \quad \vartheta \in \{-h, -h+1, \ldots, 0\}, \quad (72) \]

where \(x(k) \in \mathbb{R}^n \), \(A_j \in \mathbb{R}^{n \times n} \), \(j = 1, 2, h \) – is integer representing system time delay and \(\psi(\cdot) \) is a priori known vector function of initial conditions, as well.

STABILITY DEFINITIONS

Definition 2.2.2.1 System, given by (69), is *attractive practically stable* with respect to \(\{k_0, \mathcal{K}_N, S_\alpha, S_\beta\} \), iff

\[
\|x(k_0)\|_{A_0^T P A_0}^2 = \|x_0\|_{A_0^T P A_0}^2 < \alpha, \quad \text{implies:} \\
\|x(k)\|_{A_0^T P A_0}^2 < \beta, \quad \forall k \in \mathcal{K}_N
\]

with property that \(\lim_{k \to \infty} \|x(k)\|_{A_0^T P A_0}^2 \to 0 \), (Nestorovic et al. 2011).

Definition 2.2.2.2 System, given by (69), is *practically stable* with respect to \(\{k_0, \mathcal{K}_N, S_\alpha, S_\beta\} \), if and only if: \(\|x_0\|^2 < \alpha \), implies \(\|x(k)\|^2 < \beta \), \(\forall k \in \mathcal{K}_N \).

Definition 2.2.2.3 System given by (69), is *attractive practically unstable* with respect \(\{k_0, \mathcal{K}_N, \alpha, \beta, \|\cdot\|\} \), \(\alpha < \beta \), if for \(\|x_0\|_{A_0^T P A_0}^2 < \alpha \), there exist a moment: \(k = k^* \in \mathcal{K}_N \), so that the next condition is fulfilled \(\|x(k^*)\|_{A_0^T P A_0}^2 \geq \beta \) with property that \(\lim_{k \to \infty} \|x(k)\|_{A_0^T P A_0}^2 \to 0 \), (Nestorovic et al. 2011).

Definition 2.2.2.4 System given by (69), is *practically unstable* with respect \(\{k_0, \mathcal{K}_N, \alpha, \beta, \|\cdot\|\} \), \(\alpha < \beta \), if for \(\|x_0\|^2 < \alpha \) there exist a moment: \(k = k^* \in \mathcal{K}_N \), such that the next condition is fulfilled \(\|x(k^*)\|^2 \geq \beta \) for some \(k = k^* \in \mathcal{K}_N \).

Definition 2.2.2.5 Linear discrete time delay system (69) is *finite time stable* with respect to \(\{\alpha, \beta, k_0, k_N, \|\cdot\|\} \), \(\alpha \leq \beta \), if and only if for every trajectory \(x(k) \) satisfying initial function, (70) such that \(\|x(k)\| < \alpha \), \(k = 0, -1, -2, \ldots, -N \) imply \(\|x(k)\|^2 < \beta \), \(k \in \mathcal{K}_N \), (Aleksendric 2002), (Aleksendric & Debeljkovic 2002), (Debeljkovic & Aleksendric 2003). This Definition is analogous to that presented, for the first time, in (Debeljkovic et al. 1997.a, 1997.b, 1997.c, 1997.d) and (Nenadic et al. 1997).

SOME PREVIOUS RESULTS

Theorem 2.2.2.1 Linear discrete time delay system (69), is *finite time stable* with respect to \(\{\alpha, \beta, M, N, \|\cdot\|^2\} \), \(\alpha < \beta \), \(\alpha, \beta \in \mathbb{R}_+ \), if the following sufficient condition is fulfilled:

\[
\|\Phi(k)\| < \frac{\beta}{\alpha} \cdot \frac{1}{1 + \sum_{j=1}^M \|A_j\|}, \quad \forall k = 0, 1, \ldots, N, \quad (73)
\]
Stability of Linear Continuous Singular and Discrete Descriptor Time Delayed Systems

This result is analogous to that, for the first time derived, in (Debeljkovic et al. 1997.a) for continuous time delay systems.

Remark 2.2.2.1 The matrix measure is widely used when continuous time delay system are investigated, (Coppel 1965), (Desoer & Vidysagar 1975). The nature of discrete time delay enables one to use this approach as well as Bellman’s principle, so the problem must be attack from the point of view which is based only on norms.

STABILITY THEOREMS: PRACTICAL AND FINITE TIME STABILITY

Theorem 2.2.2.2 System given by (71), with \(\det A_1 \neq 0 \), is attractive practically stable with respect to \(\{k_0, \mathcal{K}_N, \alpha, \beta, \|\cdot\|_2^2\} \), \(\alpha < \beta \), if there exist \(P = P^T > 0 \), being the solution of:

\[
2A_0^T P A_0 - P = - Q ,
\]

where \(Q = Q^T > 0 \) and if the following conditions are satisfied (Nestorovic et al. 2011):

\[
\| A_1 \| < \sigma_{\min} \left(\left(Q - A_1^T P A_1 \right)^{\frac{1}{2}} \right) \sigma_{\max}^{-1} \left(Q^{\frac{1}{2}} A_0^T P \right) ,
\]

\[
\bar{\lambda}_{\max}^k \left(\cdot \right) < \frac{\beta}{\alpha} , \quad \forall k \in \mathcal{K}_N ,
\]

where:

\[
\bar{\lambda}_{\max} \left(\cdot \right) = \max \left\{ x^T(k) A_1^T P A_1 x(k) : x^T(k) A_0^T P A_0 x(k) = 1 \right\} .
\]

Proof. Let us use a functional, as a possible aggregation function, for the system to be considered:

\[
V(x(k)) = x^T(k) P x(k) + x^T(k-1) Q x(k-1) ,
\]

with matrices \(P = P^T > 0 \) and \(Q = Q^T > 0 \).

Clearly, using the equation of motion of (69), we have:

\[
\Delta V(x(k)) = V(x(k+1)) - V(x(k)) ,
\]

or:

\[
\Delta V(x(k)) = x^T(k+1) P x(k+1) - x^T(k) P x(k) + x^T(k) Q x(k) - x^T(k-1) Q x(k-1) = x^T(k) \left(A_0^T P A_0 + Q - P \right) x(k) + 2x^T(k) A_0^T P A_1 x(k) - x^T(k-1) \left(Q - A_1^T P A_1 \right) x(k-1) .
\]
It has been shown, (Debeljković et al. 2004, 2008), that if:

\[2A_0^T P A_0 - P = - Q, \]

where \(P = P^T > 0 \) and \(Q = Q^T > 0 \), then for:

\[V(x(k)) = x^T(k)P x(k) + x^T(k-1)Q x(k-1), \]

the backward difference along the trajectories of the systems is:

\[
\Delta V(x(k)) = V(x(k+1)) - V(x(k)) \\
= x^T(k)(A_0^T P A_0 - P + Q)x(k) + x^T(k-1)(A_1^T P A_1 - Q)x(k-1) \\
+ x^T(k)A_0^T P A_1 x(k-1) + x^T(k-1)A_1^T P A_0 x(k)
\]

or:

\[
\Delta V(x(k)) = x^T(k)(2A_0^T P A_0 - P + Q)x(k) \\
+ x^T(k-1)(2A_1^T P A_1 - Q)x(k-1) + x^T(k)A_0^T P A_1 x(k-1) \\
+ x^T(k-1)A_1^T P A_0 x(k) - x^T(k-1)A_1^T P A_1 x(k-1)
\]

and since we have to take into account (80), one can get:

\[
\Delta V(x(k)) = x^T(k-1)(2A_1^T P A_1 - Q)x(k-1) \\
- [A_0 x(k) - A_1 x(k-1)]^T P [A_0 x(k) - A_1 x(k-1)].
\]

Since the matrix \(P = P^T > 0 \), it is more than obvious, that:

\[\Delta V(x(k)) < x^T(k-1)(2A_1^T P A_1 - Q)x(k-1). \]

Combining the right sides of (80) and (86), yields:

\[
\Delta V(x(k)) = x^T(k)(A_0^T P A_0 + Q - P)x(k) + 2x^T(k)A_0^T P A_1 x(k-1) \\
< x^T(k-1)(A_1^T P A_1)x(k-1)
\]

Using the very well known inequality, with particular choice:

\[\Gamma = \frac{1}{2}(A_1^T P A_1), \]

it can be obtained:

\[
x^T(k)\left[A_0^T P A_0 + Q - P + A_0^T P A_1 \left(\frac{1}{2}A_1^T P A_1 \right)^{-1} A_1^T P A_0\right]x(k) \\
+ \frac{1}{2}x^T(k-1)(A_1^T P A_1)x(k-1) < x^T(k-1)(A_1^T P A_1)x(k-1)
\]
\[x^T(k) \left(2A_0^T P A_0 + Q - P + A_0^T P A_0 \right) x(k) < \frac{1}{2} x^T(k-1) \left(A_1^T P A_1 \right) x(k-1). \]
(90)

Since:
\[2A_0^T P A_0 + Q - P = 0, \]
(91)

it is finally obtained:
\[x^T(k) A_0^T P A_0 x(k) < \frac{1}{2} \bar{\lambda}_{\text{max}} \left(x^T(k-1) A_1^T P A_1 x(k-1), \right) \]
(92)

or:
\[x^T(k) A_0^T P A_0 x(k) < \frac{1}{2} \bar{\lambda}_{\text{max}} \left(x^T(k-1) A_0^T P A_0 x(k-1), \right) \]
(93)

where:
\[\bar{\lambda}_{\text{max}}(\cdot) = \max \left\{ x^T(k) A_1^T P A_1 x(k) : \left(2A_0^T P A_0 - P \right) = -Q, \ x^T(k) A_0^T P A_0 x(k) = 1 \right\}. \]
(94)

Since this manipulation is independent of \(k \), it can be written:
\[x^T(k+1) A_0^T P A_0 x(k+1) < \frac{1}{2} \bar{\lambda}_{\text{max}} \left(x^T(k) A_0^T P A_0 x(k) \right), \]
(95)

or:
\[\ln x^T(k+1) A_0^T P A_0 x(k+1) < \ln \frac{1}{2} \bar{\lambda}_{\text{max}} \left(x^T(k) A_0^T P A_0 x(k) \right) + \ln x^T(k) A_0^T P A_0 x(k) \]
(96)

and:
\[\ln x^T(k+1) A_0^T P A_0 x(k+1) - \ln x^T(k) A_1^T P A_1 x(k) < \ln \frac{1}{2} \bar{\lambda}_{\text{max}}(\cdot). \]
(97)

It can be shown that:
\[\sum_{j=k_0}^{k_0+k-1} \left(\ln x^T(j+1) x(j+1) - \ln x^T(j) x(j) \right) = \ln x^T(k_0+1) x(k_0+1) + \ln x^T(k_0+2) x(k_0+2) + \ldots \]
\[+ \ln x^T(k_0+k-2+1) x(k_0+k-2+1) + \ln x^T(k_0+k-1+1) x(k_0+k-1+1) \]
\[- \left(\ln x^T(k_0) x(k_0) + \ln x^T(k_0+1) x(k_0+1) + \ldots + \ln x^T(k_0+k-1) x(k_0+k-1) \right) \]
\[= \ln x^T(k_0+k) x(k_0+k) - \ln x^T(k_0) x(k_0) \]
(98)

If the summing \(\sum_{j=k_0}^{k_0+k-1} \) is applied to both sides of (97) for \(\forall k \in \mathbb{N} \), one can obtain:
\[k_0 + k - 1 \sum_{j=k_0}^{k_0 + k - 1} \ln x^T(k + 1) A_0^T P A_0 x(k + 1) - \ln x^T(k) A_0^T P A_0 x(k) \leq \sum_{j=k_0}^{k_0 + k - 1} \frac{1}{\lambda_{\text{max}}^2(j)} \leq \prod_{j=k_0}^{k_0 + k - 1} \lambda_{\text{max}} \left(\lambda_{\text{max}} \right) \]

so that, for (99), it seems to be:

\[
\ln x^T(k_0 + k) A_0^T P A_0 x(k_0 + k) - \ln x^T(k_0) A_0^T P A_0 x(k_0) < \ln \prod_{j=k_0}^{k_0 + k - 1} \lambda_{\text{max}} \left(\lambda_{\text{max}} \right) \quad \forall k \in \mathcal{N}_N
\]

as well as:

\[
\ln x^T(k_0 + k) A_0^T P A_0 x(k_0 + k) < \ln \prod_{j=k_0}^{k_0 + k - 1} \lambda_{\text{max}} \left(\lambda_{\text{max}} \right) \quad \forall k \in \mathcal{N}_N
\]

Taking into account fact that \(\|x_0\|_{A_0^T P A_0}^2 < \alpha \) and basic condition of Theorem 2.2.2.2, (76), one can get:

\[
\ln x^T(k_0 + k) A_0^T P A_0 x(k_0 + k) < \ln \prod_{j=k_0}^{k_0 + k - 1} \lambda_{\text{max}} \left(\lambda_{\text{max}} \right) + \ln x^T(k_0) A_0^T P A_0 x(k_0) \quad \forall k \in \mathcal{N}_N
\]

Remark 2.2.2.2 Assumption \(\det A_1 \neq 0 \) do not reduce the generality of this result, since this condition is not crucial when discrete time systems are considered.

Remark 2.2.2.3 Lyapunov asymptotic stability and finite time stability are independent concepts: a system that is finite time stable may not be Lyapunov asymptotically stable, conversely Lyapunov asymptotically stable system could not be finite time stable if, during the transients, its motion exceeds the pre-specified bounds \(\beta \). Attraction property is guaranteed by (74) and (75), (Debeljković et al. 2004) and system motion within pre-specified boundaries is well provided by (76).

Remark 2.2.2.4 For the numerical treatment of this problem \(\lambda_{\text{max}} \left(\lambda_{\text{max}} \right) \) can be calculated in the following way (Kalman, Bertram 1960):

\[
\lambda_{\text{max}} \left(\lambda_{\text{max}} \right) = \max \left\{ \lambda_{\text{max}} \right\} = \lambda_{\text{max}} \left(A_1^T P A_1 \left(A_0^T P A_0 \right)^{-1} \right) \quad \forall k \in \mathcal{N}_N
\]

Remark 2.2.2.5 These results are in some sense analogous to those given in (Amato et al. 2003), although results presented there are derived for continuous time varying systems.

www.intechopen.com
Now we proceed to develop delay independent criteria, for finite time stability of system under consideration, not to be necessarily asymptotic stable, e.g. so we reduce previous demand that basic system matrix A_0 should be discrete stable matrix.

Theorem 2.2.2.3 Suppose the matrix \((I - A_1^T A_1) > 0 \). System given by (69), is finite time stable with respect to \(\left\{ k_0, \mathcal{A}_N, \alpha, \beta, \|x\|^2 \right\} \), \(\alpha < \beta \), if there exist a positive real number \(p \), \(p > 1 \), such that:

$$
\|x(k-1)\|^2 < p^2 \|x(k)\|^2, \forall k \in \mathcal{A}_N, \forall x(k) \in \mathcal{S}_\beta,
$$

and if the following condition is satisfied (Nestorovic et al. 2011):

$$
\lambda_{\text{max}}^k \left(\frac{\beta}{\alpha} \right) < \forall k \in \mathcal{A}_N,
$$

where:

$$
\lambda_{\text{max}}^k (\cdot) = \lambda_{\text{max}} \left(A_0^T (I - A_1^T A_1) A_0 + p^2 I \right).
$$

Proof. Now we consider, again, system given by (69). Define:

$$
V(x(k)) = x^T(k)x(k) + x^T(k-1)x(k-1),
$$

as a tentative Lyapunov-like function for the system, given by (69). Then, the \(\Delta V(x(k)) \) along the trajectory, is obtained as:

$$
\Delta V(x(k)) = V(x(k+1)) - V(x(k)) = x^T(k+1)x(k+1) - x^T(k)x(k) \nonumber
$$

$$
= x^T(k)A_0^TA_0x(k) + 2x^T(k)A_0^TA_1x(k-1) \nonumber
$$

$$
+ x^T(k-1)A_1^TA_1x(k-1) - x^T(k-1)x(k-1)
$$

From (108), one can get:

$$
x^T(k+1)x(k+1) = x^T(k)A_0^TA_0x(k) \nonumber
$$

$$
+ 2x^T(k)A_0^TA_1x(k-1) + x^T(k-1)A_1^TA_1x(k-1)
$$

Using the very well known inequality, with choice:

$$
\Gamma = (I - A_1^T A_1) > 0,
$$

\(I \) being the identity matrix, it can be obtained:

$$
x^T(k+1)x(k+1) \leq x^T(k)A_0^TA_0x(k) + \nonumber
$$

$$
x^T(k)A_1(I - A_1^TA_1)^{-1}A_1^Tx(k) + x^T(k-1)x(k-1)
$$

and using assumption (104), it is clear that (111) reduces to:
\[x^T (k+1) x(k+1) < x^T (k) A_0^T \left((I - A_1 A_1^T)^{-1} + p^2 I \right) A_0 x(k) \]
\[< \lambda_{\text{max}}(A_0, A_1, p) x^T (k) x(k) \]

where:
\[\lambda_{\text{max}}(A_0, A_1, p) = \lambda_{\text{max}} \left(A_0^T \left((I - A_1 A_1^T)^{-1} A_0 + p^2 I \right) \right) \]

with obvious property, that gives the natural sense to this problem: \(\lambda_{\text{max}}(A_0, A_1, p) \geq 0 \) when \((I - A_1 A_1^T) \geq 0 \).

Following the procedure from the previous section, it can be written:
\[\ln x^T (k+1) x(k+1) - \ln x^T (k) x(k) < \ln \lambda_{\text{max}}() . \]

By applying the sum \(\sum_{j=k_0}^{k_0+k-1} \) on both sides of (112) for \(\forall k \in \mathcal{X}_N \), one can obtain:
\[\ln x^T(k_0 + k) x(k_0 + k) \leq \ln \prod_{j=k_0}^{k_0+k-1} \lambda_{\text{max}}() \leq \ln \lambda_k() + \ln x^T (k_0) x(k_0), \forall k \in \mathcal{X}_N \]

Taking into account the fact that \(\|x_0\|^2 < \alpha \) and condition of Theorem 2.2.2.3, (105), one can get:
\[\ln x^T(k_0 + k) x(k_0 + k) < \ln \lambda_k() \leq \ln \alpha \cdot \lambda_k() + \ln x^T (k_0) x(k_0) \]
\[< \ln \alpha \cdot \lambda_k() \leq \ln \beta, \forall k \in \mathcal{X}_N \]

Remark 2.2.2.6 In the case when \(A_1 \) is null matrix and \(p = 0 \) result, given by (106), reduces to that given in (Debeljkovic 2001) earlier developed for ordinary discrete time systems.

Theorem 2.2.2.4 Suppose the matrix \((I - A_1^T A_1) > 0 \). System, given by (69), is practically unstable with respect to \(\left\{ k_0, \mathcal{X}_N, \alpha, \beta, \|x\|^2 \right\} \), \(\alpha < \beta \), if there exist a positive real number \(p \), \(p > 1 \), such that:
\[\|x(k-1)\|^2 < p^2 \|x(k)\|^2, \forall k \in \mathcal{X}_N, \forall x(k) \in \mathcal{S}_\beta, \]

and if there exist: real, positive number \(\delta, \delta \in [0, \alpha[\) and time instant \(k, k = k^* : \exists! (k^* > k_0) \in \mathcal{X}_N \) for which the next condition is fulfilled:
\[\lambda_{\text{min}}^{k^*} > \frac{\beta}{\delta}, \quad k^* \in \mathcal{X}_N. \]
Proof. Let:

\[V(x(k)) = x^T(k)x + x^T(k-1)x(k-1) \]

(119)

Then following the identical procedure as in the previous Theorem, one can get:

\[\ln x^T(k+1)x(k+1) - \ln x^T(k)x(k) > \ln \lambda_{\min}(\cdot), \]

(120)

where:

\[\lambda_{\min}(A_0, A_1, p) = \lambda_{\min}\left(A_0^T(I - A_1A_1^T)^{-1}A_0 + p^2I\right). \]

(121)

If we apply the summing \(\sum_{j=k_0}^{k_0+k-1} \) on both sides of (120) for \(\forall k \in K_N \), one can obtain:

\[\ln x^T(k_0+k)x(k_0+k) \geq \ln \prod_{j=k_0}^{k_0+k-1} \lambda_{\min}(\cdot) \geq \ln \lambda^{k*}_{\min}(\cdot) + \ln x^T(k_0)x(k_0), \forall k \in K_N. \]

(122)

It is clear that for any \(x_0 \) follows: \(\delta < \|x_0\|^2 < \alpha \) and for some \(k^* \in K_N \) and with (118), one can get:

\[\ln x^T(k_0+k^*)x(k_0+k^*) > \ln \lambda^{k^*}_{\min}(A_0, A_1, p) + \ln x^T(k_0)x(k_0) \]

\[> \ln \delta \cdot \lambda^{k^*}_{\min}(A_0, A_1, p) > \ln \delta \cdot \beta > \ln \beta, \exists! k^* \in K_N. \]

Q.E.D.

3. Singular and descriptive time delay systems

Singular and descriptive systems represent very important classes of systems. Their stability was considered in detail in the previous chapter. Time delay phenomena, which often occur in real systems, may introduce instability, which must not be neglected. Therefore a special attention is paid to stability of singular and descriptive time delay systems, which are considered in detail in this section.

3.1 Continuous singular time delayed systems

3.1.1 Continuous singular time delayed systems – Stability in the sense of Lyapunov

Consider a linear continuous singular system with state delay, described by:

\[E\dot{x}(t) = A_0x(t) + A_1x(t-\tau), \]

(124)

with known compatible vector valued function of initial conditions:

\[x(t) = \psi(t), \quad -\tau \leq t \leq 0, \]

(125)

where \(A_0 \) and \(A_1 \) are constant matrices of appropriate dimensions.

Time delay is constant, e.g. \(\tau \in \mathbb{R}_+ \). Moreover we shall assume that \(rank E = r < n \).
Definition 3.1.1.1 The matrix pair \((E, A_0)\) is regular if \(\det(sE - A_0)\) is not identically zero, (Xu et al. 2002.a).

Definition 3.1.1.2 The matrix pair \((E, A_0)\) is impulse free if\degree\(\det(sE - A) = \text{rank} E\), (Xu et al. 2002.a).

The linear continuous singular time delay system (124) may have an impulsive solution, however, the regularity and the absence of impulses of the matrix pair \((E, A_0)\) ensure the existence and uniqueness of an impulse free solution to the system under consideration, which is defined in the following Lemma.

Lemma 3.1.1.1 Suppose that the matrix pair \((E, A_0)\) is regular and impulsive free and unique on \([0, \infty]\), (Xu et al. 2002).

Necessity for system stability investigation makes need for establishing a proper stability definition. So one can has:

Definition 3.1.1.3 Linear continuous singular time delay system (124) is said to be regular and impulsive free if the matrix pair \((E, A_0)\) is regular and impulsive free, (Xu et al. 2002.a).

STABILITY DEFINITIONS

Definition 3.1.1.4 If \(\forall t_0 \in T\) and \(\forall \varepsilon > 0\), there always exists \(\delta(t_0, \varepsilon)\), such that \(\forall \psi \in S_\delta(0, \delta) \cap S(t_0, t^*)\), the solution \(x(t, t_0, \psi)\) to (124) satisfies that \(\|q(t, x(t))\| \leq \varepsilon\), \(\forall t \in (t_0, t^*)\), then the zero solution to (124) is said to be stable on \(\{q(t, x(t)), T\}\), where \(T = [0, +t^*]\), \(0 < t^* \leq +\infty\) and \(S_\delta(0, \delta) = \{\psi \in C([-\tau, 0], \mathbb{R}^n), \|\psi\| < \delta, \delta > 0\}\). \(S_\delta(0, t^*)\) is a set of all consistency initial functions and for \(\forall \psi \in S_\delta(0, t^*)\), there exists a continuous solution to (122) in \([t_0 - \tau, t^*]\) through \((t_0, \psi)\) at least, (Li & Liu 1997, 1998).

Definition 3.1.1.5 If \(\delta\) is only related to \(\varepsilon\) and has nothing to do with \(t_0\), then the zero solution is said to be uniformly stable on \(\{q(t, x(t)), T\}\), (Li & Liu 1997, 1998).

Definition 3.1.1.6 Linear continuous singular time delay system (124) is said to be stable if for any \(\varepsilon > 0\) there exist a scalar \(\delta(\varepsilon) > 0\) such that, for any compatible initial conditions \(\psi(t)\), satisfying condition: \(\sup_{-\tau \leq t \leq 0} \|\psi(t)\| \leq \delta(\varepsilon)\), the solution \(x(t)\) of system (2) satisfies \(\|x(t)\| \leq \varepsilon, \forall t \geq 0\).

Moreover if \(\lim_{t \to \infty} \|x(t)\| \to 0\), system is said to be asymptotically stable, (Xu et al. 2002.a).

STABILITY THEOREMS

Theorem 3.1.1.1 Suppose that the matrix pair \((E, A_0)\) is regular with system matrix \(A_0\) being nonsingular, e.g. \(\det A_0 \neq 0\). System (124) is asymptotically stable, independent of delay, if there exist a symmetric positive definite matrix \(P = P^T > 0\), being the solution of Lyapunov matrix equation.
Stability of Linear Continuous Singular and Discrete Descriptor Time Delayed Systems

\[A_0^TPE + E^TPA_0 = -2(S + Q), \]

(126)

with matrices \(Q = Q^T > 0 \) and \(S = S^T \), such that:

\[x^T(t)(S + Q)x(t) > 0, \quad \forall x(t) \in \mathcal{H}_k^c \backslash \{0\}, \]

(127)

is positive definite quadratic form on \(\mathcal{H}_k^c \backslash \{0\}, \) \(\mathcal{H}_k^c \) being the subspace of consistent initial conditions, and if the following condition is satisfied:

\[\|A_1\| < \sigma_{\min} \left(\frac{1}{Q^2} \right) \sigma_{\max}^{-1} \left(Q^{-\frac{1}{2}} E^TP \right), \]

(128)

Here \(\sigma_{\max}(\cdot) \) and \(\sigma_{\min}(\cdot) \) are maximum and minimum singular values of matrix \((\cdot) \), respectively, (Debeljkovic et al. 2003, 2004, 2006, 2007).

Proof. Let us consider the functional:

\[V(x(t)) = x^T(t)E^TPEx(t) + \int_{t-\tau}^{t} x^T(\theta)Qx(\theta)d\theta. \]

(129)

Note that (Owens, Debeljkovic 1985) indicates that:

\[V(x(t)) = x^T(t)E^TPEx(t), \]

(130)

is positive quadratic form on \(\mathcal{H}_k^c \), and it is obvious that all smooth solutions \(x(t) \) evolve in \(\mathcal{H}_k^c \), so \(V(x(t)) \) can be used as a Lyapunov function for the system under consideration, (Owens, Debeljkovic 1985). It will be shown that the same argument can be used to declare the same property of another quadratic form present in (129).

Clearly, using the equation of motion of (124), we have:

\[
\dot{V}(x(t)) = x^T(t) \left(A_0^TPE + E^TPA_0 + Q \right)x(t) \\
+ 2x^T(t) \left(E^TPA_1 \right)x(t-\tau) - x^T(t-\tau)Qx(t-\tau)
\]

(131)

and after some manipulations, to the following expression is obtained:

\[
\dot{V}(x(t)) = x^T \left(A_0^TPE + E^TPA_0 + 2Q + 2S \right)x + 2x^T(t) \left(E^TPA_1 \right)x(t-\tau) \\
- x^T(t)Qx(t) - 2x^T(t)Sx(t) - x^T(t-\tau)Qx(t-\tau)
\]

(132)

From (126) and the fact that the choice of matrix \(S \) can be done, such that:

\[x^T(t)Sx(t) \geq 0, \quad \forall x(t) \in \mathcal{H}_k^c \backslash \{0\}, \]

(133)

one obtains the following result:
\[\dot{V}(x(t)) \leq 2x^T(t) \left(E^T P A_1 \right) x(t-\tau) - x^T(t) Q x(t) - x^T(t-\tau) Q x(t-\tau), \]

(134)

and based on well known inequality:

\[2x^T(t) E^T P A_1 x(t-\tau) = 2x^T(t) E^T P A_1 Q^{1/2} Q^{1/2} x(t-\tau) \leq x^T(t) E^T P A_1 Q^{-1} A_1^T P E x(t) + x^T(t-\tau) Q x(t-\tau) \]

(135)

and by substituting into (134), it yields:

\[\dot{V}(x(t)) \leq -x^T(t) Q x(t) + x^T(t) E^T P A_1 Q^{-1} A_1^T P E x(t) \leq -x^T(t) Q^{1/2} \Gamma Q^{1/2} x(t), \]

(136)

with matrix \(\Gamma \) defined by:

\[
\Gamma = \left(I - Q^{1/2} E^T P A_1 Q^{-1/2} A_1^T P E Q^{-1/2} \right) \]

(137)

\(\dot{V}(x(t)) \) is negative definite, if:

\[
1 - \lambda_{\text{max}} \left(Q^{-1/2} E^T P A_1 Q^{-1/2} A_1^T P E Q^{-1/2} \right) > 0,
\]

(138)

which is satisfied, if:

\[
1 - \sigma_{\text{max}}^2 \left(Q^{-1/2} E^T P A_1 Q^{1/2} \right) > 0. \]

(139)

Using the properties of the singular matrix values, \((Amir - Moez 1956)\), the condition (139), holds if:

\[
1 - \sigma_{\text{max}}^2 \left(Q^{-1/2} E^T P \right) \sigma_{\text{max}}^2 \left(A_1 Q^{-1/2} \right) > 0,
\]

(140)

which is satisfied if:

\[
1 - \sigma_{\text{min}}^{-2} \left(Q^{-2} \right) \left\| A_1 \right\|^2 \sigma_{\text{max}}^2 \left(Q^{-1/2} E^T P \right) > 0. \quad \text{Q.E.D.}
\]

(141)

Remark 3.1.1.1 (126-127) are, in modified form, taken from \((Owens \& Debeljkovic 1985)\).

Remark 3.1.1.2 If the system under consideration is just ordinary time delay, e.g. \(E = I \), we have result identical to that presented in \((Tissir \& Hmamed 1996)\).

Remark 3.1.1.3 Let us discuss first the case when the time delay is absent. Then the singular (weak) Lyapunov matrix (126) is natural generalization of classical Lyapunov theory. In particular:
a. If E is nonsingular matrix, then the system is asymptotically stable if and only if $A = E^{-1}A_0$ Hurwitz matrix. (126) can be written in the form:

$$A^T E P E + E^T P E A = -(Q + S),$$

(142)

with matrix Q being symmetric and positive definite, in whole state space, since then $\mathcal{W}'_k = \mathbb{R}^{n_k}$. In this circumstances $E^T P E$ is a Lyapunov function for the system.

b. The matrix A_0 by necessity is nonsingular and hence the system has the form:

$$E_0 x(t) = x(t), \quad x(0) = x_0.$$

(143)

Then for this system to be stable (143) must hold also, and has familiar Lyapunov structure:

$$E_0^T P + P E_0 = -Q,$$

(144)

where Q is symmetric matrix but only required to be positive definite on \mathcal{W}'_k.

Remark 3.1.1.4 There is no need for the system, under consideration, to posses properties given in Definition 3.1.1.2, since this is obviously guaranteed by demand that all smooth solutions $x(t)$ evolve in \mathcal{W}'_k.

Remark 3.1.1.5 Idea and approach is based upon the papers of (Owens & Debeljkovic 1985) and (Tissir & Hmamed 1996).

Theorem 3.1.1.2 Suppose that the system matrix A_0 is nonsingular, e.i. $\det A_0 \neq 0$. Then we can consider system (124) with known compatible vector valued function of initial conditions and we shall assume that $\text{rank } E_0 = r < n$.

Matrix E_0 is defined in the following way $E_0 = A_0^{-1} E$. System (124) is asymptotically stable, independent of delay, if:

$$\left\| A_1 \right\| < \sigma_{\min} \left(\frac{1}{Q_2^2} \right)^{-1} \sigma_{\max}^{-1} \left(Q^{-\frac{1}{2}} E_0^T P \right),$$

(145)

and if there exist $(n \times n)$ matrix P, being the solution of Lyapunov matrix:

$$E_0^T P + P E_0 = -2I_n,$$

(146)

with the properties given by (3)–(7).

Moreover matrix P is symmetric and positive definite on the subspace of consistent initial conditions. Here $\sigma_{\max}()$ and $\sigma_{\min}()$ are maximum and minimum singular values of matrix $()$, respectively (Debeljkovic et al. 2005.b, 2005.c, 2006.a).

For the sake of brevity the proof is here omitted and is completely identical to that of preceding Theorem.

Remark 3.1.1.6 Basic idea and approach is based upon the paper of (Pandolfi 1980) and (Tissir, Hnamed 1996).
3.1.2 Continuous singular time delayed systems – stability over finite time interval

Let us consider the case when the subspace of consistent initial conditions for singular time delay and singular non-delay system coincide.

STABILITY DEFINITIONS

Definition 3.1.2.1 Regular and impulsive free singular time delayed system (124), is finite time stable with respect to \(\{ t_0, \mathcal{I}, \mathcal{S}_\alpha, \mathcal{S}_\beta \} \), if and only if \(\forall x_0 \in \mathcal{W}^*_k \) satisfying

\[
\left\| x(t_0) \right\|_{E^*}^2 = \left\| x_0 \right\|_{E^*}^2 < \alpha, \text{ implies } \left\| x(t) \right\|_{E^*}^2 < \beta, \ \forall t \in \mathcal{I}.
\]

Definition 3.1.2.2 Regular and impulsive free singular time delayed system (124), is attractive practically stable with respect to \(\{ t_0, \mathcal{I}, \mathcal{S}_\alpha, \mathcal{S}_\beta \} \), if and only if \(\forall x_0 \in \mathcal{W}^*_k \) satisfying

\[
\left\| x(t_0) \right\|_{G = E^*P_E}^2 = \left\| x_0 \right\|_{G = E^*P_E}^2 < \alpha \text{ implies: } \left\| x(t) \right\|_{G = E^*P_E}^2 < \beta, \ \forall t \in \mathcal{I}, \text{ with property that}
\]

\[
\lim_{k \to \infty} \left\| x(t) \right\|_{G = E^*P_E}^2 \to 0, \ \mathcal{W}^*_k \text{ being the subspace of consistent initial conditions}, (\text{Debeljkovic et al. 2011.b}).
\]

Remark 3.1.2.1 The singularity of matrix \(E \) will ensure that solutions to (6) exist for only special choice of \(x_0 \).

In (Owens, Debeljković 1985) the subspace of \(\mathcal{W}^*_k \) of consistent initial conditions is shown to be the limit of the nested subspace algorithm (12)–(14).

STABILITY THEOREMS

Theorem 3.1.2.1 Suppose that \((I - E^*E) > 0 \). Singular time delayed system (124), is finite time stable with respect to \(\{ t_0, \mathcal{I}, \alpha, \beta, \| \| \} \), \(\alpha < \beta \), if there exist a positive real number \(q \), \(q > 1 \), such that:

\[
\left\| x(t + \theta) \right\|^2 - q^2 \left\| x(t) \right\|^2, \ \theta \in [-\tau, 0], \ \forall t \in \mathcal{I}, \ x(t) \in \mathcal{W}^*_k, \ \forall x(t) \in \mathcal{S}_\beta,
\]

and if the following condition is satisfied:

\[
e^{\overline{\lambda}}(x)(t-t_0) < \frac{\beta}{\alpha}, \ \forall t \in \mathcal{I},
\]

where:

\[
\overline{\lambda}(x)(t-t_0) = \max \{ x^T(t)(A^T_0 E + E^T A_0 + E^T A_1 (I - E^T E)^{-1} A^T_1 E
\]

\[+ q^2 T x(t), x(t) \in \mathcal{W}^*_k, x^T(t)E^T E x(t) = 1 \}.
\]

Proof. Define tentative aggregation function as:

\[
V(x(t)) = x^T(t)E^T E x(t) + \int_{t-\tau}^{t} x^T(\theta) x(\theta) d\theta.
\]

www.intechopen.com
Let \(x_0 \) be an arbitrary consistent initial condition and \(x(t) \) resulting system trajectory.

The total derivative \(\dot{V}(t, x(t)) \) along the trajectories of the system, yields:

\[
\dot{V}(t, x(t)) = \frac{d}{dt} \left(x^T(t) E^T E x(t) \right) + \frac{d}{dt} \int_{t-\tau}^{t} x^T(\theta) x(\theta) d\theta \\
= x^T(t) \left(A_0^T E + E^T A_0 \right) x(t) + 2x^T(t) E^T A_1 x(t-\tau) + x^T(t) x(t) - x^T(t-\tau) x(t-\tau)
\]

From (148) it is obvious:

\[
\frac{d}{dt} \left(x^T(t) E^T E x(t) \right) = x^T(t) \left(A_0^T E + E^T A_0 \right) x(t) + 2x^T(t) E^T A_1 x(t-\tau),
\]

and based on well known inequality and with the particular choice:

\[
x^T(t) \Gamma x(t) = x^T(t) \left(I - E^T E \right) x(t) > 0, \quad \forall x(t) \in \mathcal{W}^*_k \setminus \{0\},
\]

so:

\[
\frac{d}{dt} \left(x^T(t) E^T E x(t) \right) \leq x^T(t) \left(A_0^T E + E^T A_0 \right) x(t) + x^T(t) \left(I - E^T E \right)^{-1} A_1^T E x(t) + x^T(t) \left(I - E^T E \right) x(t-\tau).
\]

Moreover, since:

\[
\left\| x(t-\tau) \right\|_{E^T E}^2 \geq 0, \quad \forall x(t) \in \mathcal{W}^*_k \setminus \{0\},
\]

and using assumption (147), it is clear that (154) reduces to:

\[
\frac{d}{dt} \left(x^T(t) E^T E x(t) \right) < x^T(t) \left(A_0^T E + E^T A_0 + E^T A_1 \left(E^T E - I \right)^{-1} A_1^T E + q^2 I \right) x(t) < \bar{\lambda}_{\max}(\Xi) x^T(t) E^T E x(t)
\]

Remark 3.1.2 Note that Lemma 2.2.1.1 and Theorem 2.2.1.1 indicates that:

\[
V(x(t)) = x^T(t) E^T E x(t),
\]

is positive quadratic form on \(\mathcal{W}^*_k \), and it is obvious that all smooth solutions \(x(t) \) evolve in \(\mathcal{W}^*_k \), so \(V(x(t)) \) can be used as a Lyapunov function for the system under consideration, \((Owens, Debeljkovic 1985)\).

Using (149) one can get \((Debeljkovic et al. 2011.b)\):

\[
\int_{t_0}^{t} \frac{d}{dt} \left(x^T(t) E^T E x(t) \right) < \int_{t_0}^{t} \bar{\lambda}_{\max}(\Xi) dt,
\]

and:
\[
\begin{align*}
 x^T(t)E^TEx(t) &< x^T(t_0)E^TEx(t_0)e^{\tau_{\text{max}}(t-t_0)} \\
 &< \alpha \cdot e^{\tau_{\text{max}}(t-t_0)} < \alpha \cdot \frac{\beta}{\alpha} < \beta, \forall t \in \mathcal{I}. \quad \text{Q.E.D.}
\end{align*}
\]

Remark 3.1.2.3 In the case on non-delay system, e.g. \(A_1 \equiv 0 \), (148) reduces to basic result, (Debeljkovic, Owens 1985).

Theorem 3.1.2.2 Suppose that \((Q-E^TQE) > 0 \). Singular time delayed system (124), with system matrix \(A_0 \) being nonsingular, is attractive practically stable with respect to

\[
\{t_0, \mathcal{I}, \alpha, \beta, \|\cdot\|_{G=E^TPE}^2\} , \alpha < \beta, \text{if there exist matrix } P = P^T > 0, \text{being solution of:}
\]

\[
A_0^TPE + E^TPA_0 = -Q,
\]

with matrices \(Q = Q^T > 0 \wedge S = S^T \), such that:

\[
x^T(t) (S + Q) x(t) > 0, \quad \forall x(t) \in \mathcal{W}_{k}^* \setminus \{0\},
\]

is positive definite quadratic form on \(\mathcal{W}_{k}^* \setminus \{0\}, \mathcal{W}_{k}^* \) being the subspace of consistent initial conditions, if there exist a positive real number \(q, q > 1 \), such that:

\[
\|x(t-\tau)\|_Q^2 < q^2 \|x(t)\|_Q^2, \quad \forall t \in \mathcal{I}, \quad \forall x(t) \in S_{\beta}, \quad \forall x(t) \in \mathcal{W}_{k}^* \setminus \{0\},
\]

and if the following conditions are satisfied (Debeljkovic et al. 2011.b):

\[
\|A_1\| < \sigma_{\text{min}} \left(Q^{\frac{1}{2}} \right) \sigma_{\text{max}}^{-1} \left(Q^{-\frac{1}{2}} A_0^T P \right),
\]

and:

\[
e^{\tau_{\text{max}}(\Psi)(t-t_0)} < \frac{\beta}{\alpha}, \quad \forall t \in \mathcal{I},
\]

where:

\[
\tau_{\text{max}}(\Psi) = \max\{x^T(t)(E^TPA_1)(Q-E^TPE)^{-1}A_1^TPE + q^2 Q)x(t), x(t) \in \mathcal{W}_{k}^*, x^T(t)E^TPEx(t) = 1\}.
\]

Proof. Define tentative aggregation function as:

\[
V(x(t)) = x^T(t)E^TPEx(t) + \int_{t-\tau}^{t} x^T(\theta)Qx(\theta)d\theta.
\]

The total derivative \(\dot{V}(t,x(t)) \) along the trajectories of the system, yields:
\[\dot{V}(t, \mathbf{x}(t)) = \frac{d}{dt} \left(\mathbf{x}^T(t) E^T P E \mathbf{x}(t) \right) + \frac{d}{dt} \int_{t-\tau}^{t} \mathbf{x}^T(\theta) Q \mathbf{x}(\theta) d\theta \]
\[= \mathbf{x}^T(t) \left(A_0^T P E + E^T P A_0 \right) \mathbf{x}(t) + 2 \mathbf{x}^T(t) E^T P A_1 \mathbf{x}(t-\tau) \]
\[+ \mathbf{x}^T(t) Q \mathbf{x}(t) - \mathbf{x}^T(t-\tau) Q \mathbf{x}(t-\tau). \tag{167}\]

From (162), it is obvious:
\[\frac{d}{dt} \left(\mathbf{x}^T(t) E^T P E \mathbf{x}(t) \right) = \mathbf{x}^T(t) \left(A_0^T P E + E^T P A_0 \right) \mathbf{x}(t) + 2 \mathbf{x}^T(t) E^T P A_1 \mathbf{x}(t-\tau), \tag{168}\]
or:
\[\frac{d}{dt} \left(\mathbf{x}^T(t) E^T P E \mathbf{x}(t) \right) = \mathbf{x}^T(t) \left(A_0^T P E + E^T P A_0 + Q + S \right) \mathbf{x}(t) \]
\[+ 2 \mathbf{x}^T(t) E^T P A_1 \mathbf{x}(t-\tau) - \mathbf{x}^T(t)(Q + S) \mathbf{x}(t). \tag{169}\]

From (160), it follows:
\[\frac{d}{dt} \left(\mathbf{x}^T(t) E^T P E \mathbf{x}(t) \right) = -\mathbf{x}^T(t)(Q + S) \mathbf{x}(t) + 2 \mathbf{x}^T(t) E^T P A_1 \mathbf{x}(t-\tau), \tag{170}\]
as well, using before mentioned inequality, with particular choice:
\[\mathbf{x}^T(t) \Gamma \mathbf{x}(t) = \mathbf{x}^T(t) \left(Q - E^T P E \right) \mathbf{x}(t) > 0, \quad \forall \mathbf{x}(t) \in \mathcal{W}^*_1 \setminus \{0\}, \tag{171}\]
and fact that:
\[\mathbf{x}^T(t)(Q + S) \mathbf{x}(t) > 0, \quad \forall \mathbf{x}(t) \in \mathcal{W}^*_1 \setminus \{0\}, \tag{172}\]
is positive definite quadratic form on \(\mathcal{W}^*_1 \setminus \{0\} \), one can get:
\[\frac{d}{dt} \left(\mathbf{x}^T(t) E^T P E \mathbf{x}(t) \right) = 2 \mathbf{x}^T(t) E^T P A_1 \mathbf{x}(t-\tau) \]
\[\leq \mathbf{x}^T(t) E^T P A_1 \left(Q - E^T P E \right)^{-1} A_1^T P E \mathbf{x}(t) + \mathbf{x}^T(t-\tau) \left(Q - E^T P E \right) \mathbf{x}(t) \tag{173}\]
Moreover, since:
\[\| \mathbf{x}(t-\tau) \|^2_{E^T P E} \geq 0, \quad \forall \mathbf{x}(t) \in \mathcal{W}^*_1 \setminus \{0\}, \tag{174}\]
and using assumption (162) it is clear that (173), reduces to:
\[\frac{d}{dt} \left(\mathbf{x}^T(t) E^T P E \mathbf{x}(t) \right) < \mathbf{x}^T(t) \left(E^T P A_1 \left(E^T P E - Q \right)^{-1} A_1^T P E + q^2 Q \right) \mathbf{x}(t), \tag{175}\]
or using (169), one can get:
\[\frac{d}{dt} \left(\mathbf{x}^T(t) E^T P E \mathbf{x}(t) \right) < \mathbf{x}^T(t) \left(E^T P A_1 \left(E^T P E - Q \right)^{-1} A_1^T P E + q^2 Q \right) \mathbf{x}(t) \]
\[< \lambda_{\max} (\Psi) \mathbf{x}^T(t) E^T P E \mathbf{x}(t) \tag{176}\]
or finally:

\[x^T(t)E^TPEx(t) < x^T(t_0)E^TPEx(t_0)e^{\max_{\psi}(\psi)(t-t_0)} \]
\[< \alpha \cdot e^{\max_{\psi}(\psi)(t-t_0)} < \alpha \cdot \beta, \forall t \in \mathbb{R}. \quad \text{Q.E.D.} \]

3.2 Discrete descriptor time delayed systems

3.2.1 Discrete descriptor time delayed systems – Stability in the sense of Lyapunov

Consider a linear discrete descriptor system with state delay, described by:

\[E_k x(k+1) = A_0 x(k) + A_1 x(k-1), \quad (178) \]
\[x(k_0) = \varphi(k_0), \quad -1 \leq k_0 \leq 0, \quad (179) \]

where \(x(k) \in \mathbb{R}^n \) is a state vector. The matrix \(E \in \mathbb{R}^{n \times n} \) is a necessarily singular matrix, with property \(\text{rank}(E) = r < n \) and with matrices \(A_0 \) and \(A_1 \) of appropriate dimensions.

For a (DDTDS), (178), we present the following definitions taken from, \(\text{(Xu et al. 2002.b)} \).

Definition 3.2.1.1 The (DDTDS) is said to be **regular** if \(\det(zE - zA_0 - A_1) \) is not identically zero.

Definition 3.2.1.2 The (DDTDS) is said to be **causal** if it is regular and \(\deg(z^n \det(zE - zA_0 - z^{-1}A_1)) = n + \text{rang}(E) \).

Definition 3.2.1.3 The (DDTDS) is said to be **stable** if it is regular and \(\rho(E, A_0, A_1) \subset D(0,1) \), where \(\rho(E, A_0, A_1) = \{z | \det(z^2E - zA_0 - A_1) = 0\} \).

Definition 3.2.1.4 The (DDTDS) is said to be **admissible** if it is regular, causal and stable.

STABILITY DEFINITIONS

Definition 3.2.1.5 System (178) is \(E \)-stable if for any \(\varepsilon > 0 \), there always exists a positive \(\delta \) such that \(\|E x(k)\| < \varepsilon \), when \(\|E x_0\| < \delta \), (Liang 2000).

Definition 3.2.1.6 System (178) is \(E \)-asymptotically stable if (178) is \(E \)-stable and \(\lim_{k \to +\infty} E x(k) \to 0 \), (Liang 2000).

STABILITY THEOREMS

Theorem 3.2.1.1 Suppose that system (173) is regular and causal with system matrix \(A_0 \) being nonsingular, i.e. \(\det A_0 \neq 0 \). System (178) is asymptotically stable, independent of delay, if

\[\|A_1\| < \frac{\sigma_{\min} \left(\frac{1}{Q^2} \right)}{\sigma_{\max} \left(Q^{-\frac{3}{2}} A_0^2 P \right)} \]

\(\text{(180)} \)
and if there exist a symmetric positive definite matrix P on the whole state space, being the solution of discrete Lyapunov matrix equation:

$$A_0^T P A_0 - E^T P E = -2(S + Q),$$

(181)

with matrices $Q = Q^T > 0$ and $S = S^T$, such that:

$$x^T(k)(S + Q)x(k) > 0, \ \forall x(k) \in \mathcal{W}_{d,k} \setminus \{0\},$$

(182)

is positive definite quadratic form on $\mathcal{W}_{d,k} \setminus \{0\}$, $\mathcal{W}_{d,k}$, being the subspace of consistent initial conditions. Here $\sigma_{\text{max}}(\cdot)$ and $\sigma_{\text{min}}(\cdot)$ are maximum and minimum singular values of matrix \cdot, respectively, (Debeljkovic et al. 2004).

Remark 3.2.1.1 (181 - 182) are, in modify form, taken from (Owens, Debeljkovic 1985).

Remark 3.2.1.2 If the system under consideration is just ordinary time delay, e.g. $E = I$, we have result identical to that presented in Debeljkovic et al. (2004.a – 2004.d, 2005.a, 2005.b).

Remark 3.2.1.3 Idea and approach is based upon the papers of (Owens, Debeljkovic 1985) and (Tissir, Hmamed 1996).

Theorem 3.2.1.2 Suppose that system (178) is regular and causal. Moreover, suppose matrix $(Q_\lambda - A_1^T P_\lambda A_1)$ is regular, with $Q_\lambda = Q_\lambda^T > 0$.

System (178) is asymptotically stable, independent of delay, if:

$$\|A_1\| < \frac{\sigma_{\text{min}}\left(\sqrt{Q_\lambda - A_1^T P_\lambda A_1}\right)}{\sigma_{\text{max}}\left(Q_\lambda^{-1} (A_0 - \lambda E)^T P_\lambda\right)},$$

(183)

and if there exist real positive scalar $\lambda^* > 0$ such that for all λ within the range $0 < |\lambda| < \lambda^*$ there exist symmetric positive definite matrix P_λ, being the solution of discrete Lyapunov matrix equation:

$$\left(A_0 - \lambda E\right)^T P_\lambda \left(A_0 - \lambda E\right) - E^T P_\lambda E = -2(S_\lambda + Q_\lambda),$$

(184)

with matrix $S_\lambda = S_\lambda^T$, such that:

$$x^T(k)(S_\lambda + Q_\lambda)x(k) > 0, \ \forall x(k) \in \mathcal{W}_{d,k} \setminus \{0\}$$

(185)

is positive definite quadratic form on $\mathcal{W}_{d,k} \setminus \{0\}$, $\mathcal{W}_{d,k}$, being the subspace of consistent initial conditions for both time delay and non-time delay discrete descriptor system. Such conditions we call compatible consistent initial conditions. Here $\sigma_{\text{max}}(\cdot)$ and $\sigma_{\text{min}}(\cdot)$ are maximum and minimum singular values of matrix \cdot respectively, (Debeljkovic et al. 2007).

3.2.2 Discrete descriptor time delayed systems – stability over finite time interval

To the best knowledge of the authors, there is not any paper treating the problem of finite time stability for discrete descriptor time delay systems. Only one paper has been written in
context of practical and finite time stability for continuous singular time delay systems, see (Yang et al. 2006).

Definition 3.2.2.1 Causal system, given by (178), is finite time stable with respect to \(\{k_0, \mathcal{K}, S_{\alpha}, S_{\beta}\} \), if and only if \(\forall x_0 \in \mathcal{W}_{d,k} \) satisfying \(\|x_0\|_{E,E}^2 < \alpha \), implies:
\[
\|x(k)\|_{E,E}^2 < \beta, \quad \forall k \in \mathcal{K}.
\]

Definition 3.2.2.2 Causal system given by (178), is practically unstable with respect to \(\{k_0, \mathcal{K}, \alpha, \beta \} \), if and only if \(\exists x_0 \in \mathcal{W}_{d,k} \) such that \(\|x_0\|_{E,E}^2 < \alpha \), there exist some \(k^* \in \mathcal{K} \), such that the following condition is fulfilled
\[
\|x(k^*)\|_{E,E}^2 \geq \beta, \quad \forall k \in \mathcal{K}.
\]

Definition 3.2.2.3 Causal system given by (178), is attractive practically stable with respect to \(\{k_0, \mathcal{K}, S_{\alpha}, S_{\beta}\} \), if and only if \(\forall x_0 \in \mathcal{W}_{d,k} \) satisfying
\[
\lim_{k \to \infty} \|x(k)\|_{E,E}^2 = 0,
\]
with matrix \(R = R^T \) and corresponding eigenvalues:
\[
\lambda_{\min}(\Xi) \leq \frac{x^T(k)R x(k)}{x^T(k)G x(k)} \leq \lambda_{\max}(\Xi), \quad \forall x(k) \in \mathcal{W}_{d,k} \backslash \{0\}, \quad (186)
\]
with matrix \(R = R^T \) and corresponding eigenvalues:
\[
\lambda_{\min}(R,G,\mathcal{W}_{d,k}) = \min\left\{ x^T(k)R x(k): x(k) \in \mathcal{W}_{d,k} \backslash \{0\}, \ x^T(k)G x(k) = 1 \right\}, \quad (187)
\]
\[
\lambda_{\max}(R,G,\mathcal{W}_{d,k}) = \max\left\{ x^T(k)R x(k): x(k) \in \mathcal{W}_{d,k} \backslash \{0\}, \ x^T(k)G x(k) = 1 \right\}. \quad (188)
\]

Note that \(\lambda_{\min} > 0 \) if \(R = R^T > 0 \).

Let us consider the case when the subspace of consistent initial conditions for discrete descriptor time delay and discrete descriptor nondelay system coincide.

STABILITY THEOREMS

Theorem 3.2.2.1 Suppose matrix \(\left(A^T A - E^T E \right) > 0 \). Causal system given by (178), is finite time stable with respect to \(\{k_0, \mathcal{K}, \alpha, \beta \} \), if there exist a positive real number \(p, p > 1 \), such that:
\[\|x(k-1)\|_{A_1A_1}^2 < p^2 \|x(k)\|_{A_1^*A_1}^2, \quad \forall k \in K_N, \quad \forall x(k) \in S_\beta, \quad \forall \mathbf{x}(k) \in \mathcal{W}_{d,k}^* \setminus \{0\} \]

(189)

and if the following condition is satisfied (Nestorovic & Debeljkovic 2011):

\[\overline{\lambda}_{\max}(x) < \frac{\beta}{\alpha}, \quad \forall k \in K_N, \]

(190)

where:

\[\overline{\lambda}_{\max}(x) = \overline{\lambda}_{\max}(x^T(k)A_0^T(I-A_1(A_1^TA_1-E^TE)^{-1}A_1^T) + p^2A_1^TA_1)A_0x(k), \quad x(k) \in \mathcal{W}_{d,k}^*, \quad x^T(k)E^TEx(k) = 1. \]

(191)

Proof. Define:

\[V(x(k)) = x^T(k)x(k) + x^T(k-1)x(k-1). \]

(192)

Let \(x_0 \) be an arbitrary consistent initial condition and \(x(k) \) the resulting system trajectory. The backward difference \(\Delta V(x(k)) \) along the trajectories of the system, yields:

\[\Delta V(x(k)) = x^T(k)(A_0^TA_0 - E^TE + I)x(k) + 2x^T(k)(A_0^TA_1)x(k-1) + x^T(k-1)(A_1^TA_1 - I)x(k-1) \]

(193)

From (192) one can get:

\[x^T(k+1)E^TEx(k+1) = x^T(k)(A_0^TA_0)x(k) + 2x^T(k)(A_0^TA_1)x(k-1) + x^T(k-1)(A_1^TA_1)x(k-1) \]

(194)

Using the very well known inequality, with particular choice:

\[x^T(k)\Gamma x(k) = x^T(k)(A_1^TA_1 - E^TE)x(k) \geq 0, \quad x(k) \in \mathcal{W}_{d,k}^*, \quad \forall x(k) \in S_\beta, \forall k \in K_N, \]

(195)

it can be obtained:

\[x^T(k+1)E^TEx(k+1) \leq x^T(k)A_0^TA_0x(k) - x^T(k)A_0^TA_1(A_1^TA_1 - E^TE)^{-1}A_1^TA_0x(k) + x^T(k-1)(2A_1^TA_1 - E^TE)x(k-1) \]

(196)

Moreover, since:

\[\|x(k-1)\|_{E^TE}^2 \geq 0, \quad \forall k \in K_N, \quad \forall x(k) \in \mathcal{W}_{d,k}^* \setminus \{0\} \]

(197)

and using assumption (189) it is clear that (196), reduces to:

\[x^T(k+1)E^TEx(k+1) < x^T(k)A_0^TI - A_1(A_1^TA_1 - E^TE)^{-1}A_1^TA_0x(k) + x^T(k-1)(2A_1^TA_1 - E^TE)x(k-1) \]

(198)
\[
\begin{align*}
\bar{\lambda}_{\text{max}}(\cdot) &= \{ x^T(k)A_0^T \left(I - A_1 \left(A_1^T A_1 - E^T E \right)^{-1} A_1^T + 2p^2l \right) A_0 x(k), \quad (199) \\
x(k) &\in \mathcal{W}_{d,k}, \quad x^T(k)E^T E x(k) = 1.
\end{align*}
\]

Following the procedure from the previous section, it can be written:
\[
\ln x^T(k+1)E^T E x(k+1) - \ln x^T(k)E^T E x(k) < \ln \bar{\lambda}_{\text{max}}(\cdot).
\]

By applying the summing \[\sum_{j=k_0}^{k_0+k-1}\] on both sides of (200) for \(\forall k \in \mathcal{K}_N\), one can obtain:
\[
\ln x^T(k_0 + k)E^T E x(k_0 + k) \leq \ln \prod_{j=k_0}^{k_0+k-1} \bar{\lambda}_{\text{max}}(\cdot)
\leq \ln \bar{\lambda}_{\text{max}}^k(\cdot) + \ln x^T(k_0)E^T E x(k_0), \quad \forall k \in \mathcal{K}_N
\]

Taking into account the fact that \[\|x_0\|^2_{E^T E} < \alpha\] and the condition of Theorem 3.2.2.1, eq. (190), one can get:
\[
\ln x^T(k)E^T E x(k) < \ln \bar{\lambda}_{\text{max}}^k(\cdot) + \ln x^T(k_0)E^T E x(k_0)
\leq \ln \alpha \cdot \bar{\lambda}_{\text{max}}^k(\cdot) + \ln \alpha \leq \ln \beta, \quad \forall k \in \mathcal{K}_N. \quad Q.E.D.
\]

Theorem 3.2.2.2 Suppose matrix \(A_1^T A_1 - E^T E > 0\). Causal system (178), is finite time unstable with respect to \(\{k_0, \mathcal{K}_N, \alpha, \beta, \|\cdot\|^2\}\), \(\alpha < \beta\), if there exist a positive real number \(p, \ p > 1\), such that:
\[
\left\|x(k-1)\right\|^2_{A_1^T A_1} < p^2 \left\|x(k)\right\|^2_{A_1^T A_1}, \quad \forall k \in \mathcal{K}_N, \quad \forall x(k) \in \mathcal{S}_\beta, \quad \forall x(k) \in \mathcal{W}_{d,k} \setminus \{0\}
\]

and if for \(\forall x_0 \in \mathcal{W}_{d,k}\) and \(\|x_0\|^2_{G \in E^T E} < \alpha\) there exist: real, positive number \(\delta, \delta \in \left[0, \alpha \right]\) and time instant \(k, k = k^* \): \(\exists \{k^* > k_0\} \in \mathcal{K}_N\), for which the next condition is fulfilled (Nestorovic & Debeljkovic 2011):
\[
\bar{\lambda}_{\text{min}}^{k^*}(\cdot) > \frac{\beta}{\delta}, \quad k^* \in \mathcal{K}_N,
\]

where:
\[
\bar{\lambda}_{\text{min}}(\cdot) = \bar{\lambda}_{\text{min}}\{x^T(k)A_0^T \left(I - A_1 \left(A_1^T A_1 - E^T E \right)^{-1} A_1^T + 2\varphi(k)l \right) A_0 x(k), \quad (205) \\
x(k) \in \mathcal{W}_{d,k}^*, \quad x^T(k)E^T E x(k) = 1.
\]

Proof. Following the identical procedure as in the previous *Theorem*, with the same aggregation function, one can get:
\[
\ln x^T(k_0 + k^*)E^TEx(k_0 + k^*) > \ln \bar{\lambda}^k_{\text{min}}(\cdot) + \ln x^T(k_0)E^TEx(k_0) > \ln \delta \cdot \bar{\lambda}^k_{\text{min}}(\cdot) > \ln \delta \cdot \frac{\beta}{\delta} > \ln \beta, \text{ for some } k^* \in \mathcal{K}_N,
\]

where \(\bar{\lambda}^k_{\text{min}}(\cdot) \) is given by (187). Q.E.D.

Theorem 3.2.2.3 Suppose matrix \((A^T_1PA_1 - E^TP E) \geq 0 \). Causal system given by (178), with
\[
\det A_0 \neq 0, \text{ is attractive practically stable with respect to } \left\{k_0, \mathcal{K}_N, \alpha, \beta, \|()\|^2\right\}, \alpha < \beta, \text{ if there exists a matrix } P = P^T > 0, \text{ being the solution of:}
\]
\[
A^T_1PA_0 - E^TP E = -2(Q + S),
\]

with matrices \(Q = Q^T > 0 \) and \(S = S^T \), such that:
\[
x^T(k)(Q + S)x(k) > 0, \forall x(k) \in \mathcal{W}_{d,k^*} \setminus \{0\}
\]
is positive definite quadratic form on \(\mathcal{W}_{d,k^*} \setminus \{0\} \), \(p \) real number, \(p > 1 \), such that:
\[
\|x(k-1)\|_{A^T_1PA_1}^2 < p^2 \|x(k)\|_{A^T_1PA_1}^2, \forall k \in \mathcal{K}_N, \forall x(k) \in \mathcal{S}_\beta, \forall x(k) \in \mathcal{W}_{d,k^*}^* \setminus \{0\}
\]
and if the following conditions are satisfied (Nestorovic & Debeljkovic 2011):
\[
\|A_1\| < \sigma_{\min} \left(\frac{Q^2}{Q^2} \right) \sigma^{-1}\max \left(Q^{-\frac{1}{2}}E^TP \right),
\]

and
\[
\bar{\lambda}^k_{\text{max}}(\cdot) < \frac{\beta}{\alpha}, \forall k \in \mathcal{K}_N,
\]
where:
\[
\bar{\lambda}_{\text{max}}(\cdot) = \max \{x^T(k)A^T_1P \frac{1}{2} \left(I - A_1 \left(A^T_1PA_1 - E^TP E \right)^{-1} A^T_1 + p^2I \right) \} \frac{1}{2} A_0x(k) : x(k) \in \mathcal{W}_{d,k^*}, x^T(k)E^TP E x(k) = 1
\]

Proof. Let us consider the functional:
\[
V(x(k)) = x^T(k)E^TPEx(k) + x^T(k-1)Qx(k-1)
\]

with matrices \(P = P^T > 0 \) and \(Q = Q^T > 0 \).

Remark 3.2.2.2 (208 – 209) are, in modified form, taken from (Owens, Debeljkovic 1985).

For given (213), general backward difference is:
\[\Delta V(x(k)) = V(x(k+1)) - V(x(k)) = x^T(k+1)E^TPEx(k+1) + x^T(k)Qx(k) - x^T(k)E^TPEx(k) - x^T(k-1)Qx(k-1). \] (214)

Clearly, using the equation of motion (178), we have:

\[\Delta V(x(k)) = x^T(k)\left(A_0^TPA_0 - E^TPE + Q\right)x(k) + 2x^T(k)\left(A_0^TPA_1\right)x(k-1) - x^T(k)\left(Q - A_1^TPA_1\right)x(k-1), \] (215)

or

\[\Delta V(x(k)) = x^T(k)\left(A_0^TPA_0 - E^TPE + 2Q + 2S\right)x(k) - x^T(k)Qx(k) - 2x^T(k)Sx(k) + 2x^T(k)\left(A_0^TPA_1\right)x(k-1) - x^T(k-1)\left(Q - A_1^TPA_1\right)x(k-1). \] (216)

Using (208) and (209) yields:

\[x^T(k+1)E^TPEx(k+1) = x^T(k)A_0^TPA_0x(k) + 2x^T(k)A_0^TPA_1x(k-1) + x^T(k-1)A_1^TPA_1x(k-1). \] (217)

Using the very well known inequality, with particular choice:

\[x^T(k)\Gamma x(k) = x^T(k)\left(A_1^TPA_1 - E^TPE\right)x(k) \geq 0, \] (218)

\[x(k) \in \mathcal{W}_{k,\Gamma}, \forall x(k) \in S_{\beta}, \forall k \in \mathcal{K}. \]

one can get:

\[x^T(k+1)E^TPEx(k+1) \leq x^T(k)A_0^TPA_0x(k) - x^T(k)A_0^TPA_1(A_1^TPA_1 - E^TPE)^{-1}A_1^TPA_0x(k) + x^T(k-1)(2A_1^TPA_1 - E^TPE)x(k-1). \] (219)

Moreover, since:

\[\left\| x(k-1) \right\|_{E^TPE}^2 \geq 0, \forall k \in \mathcal{K}, \forall x(k) \in \mathcal{W}_{d,k} \setminus \{0\} \] (220)

and using assumption (209) it is clear that (219), reduces to:

\[x^T(k+1)E^TPEx(k+1) \leq x^T(k)A_0^TP_2^{-1}\left(I - A_1\left(A_1^TPA_1 - E^TPE\right)^{-1}A_1^T + 2p^2I\right)P_2^2A_0x(k) \] (221)

Using very well known the property of quadratic form, one can get:

\[x^T(k+1)E^TPEx(k+1) \leq \overline{\lambda}_\text{max}\left(x(k)E^TPEx(k)\right) \] (222)

where:

\[\overline{\lambda}_\text{max}\left(x(k)E^TPEx(k)\right) = (x^T(k)A_0^TP_2^{-1}\left(I - A_1\left(A_1^TPA_1 - E^TPE\right)^{-1}A_1^T + 2p^2I\right)P_2^2A_0x(k), \] (223)

\[x(k) \in \mathcal{W}_{d,k} \setminus \{0\}, \ x^T(k)E^TPEx(k) = 1. \]

www.intechopen.com
Then following the identical procedure as in the Theorem 3.2.2.1, one can get:

\[
\ln x^T (k+1)E^T P Ex(k+1) - \ln x^T (k)E^T P Ex(k) < \ln \lambda_{\max} ()
\]

(224)

where \(\lambda_{\max} () \) is given by (223).

If the summing \(\sum_{j=k_0}^{k_0+k-1} \) is applied to both sides of (224) for \(\forall k \in \mathcal{N}_c \), one can obtain:

\[
\ln x^T (k_0 + k)E^T P Ex(k_0 + k) \leq \ln \prod_{j=k_0}^{k_0+k-1} \lambda_{\max} () \leq \ln \lambda_{\max}^k() + \ln x^T (k_0)E^T P Ex(k_0), \forall k \in \mathcal{N}_c
\]

(225)

Taking into account the fact that \(\|X_0\|_{E^T P E}^2 < \alpha \) and the basic condition of Theorem 3.2.2.3, (211), one can get:

\[
\ln x^T (k_0 + k)E^T P Ex(k_0 + k) < \ln \lambda_{\max}^k() + \ln x^T (k_0)E^T P Ex(k_0)
\]

\[
< \ln \alpha \cdot \lambda_{\max}^k() < \ln \alpha \cdot \frac{\beta}{\alpha} < \ln \beta, \forall k \in \mathcal{N}_c. \quad Q.E.D.
\]

(226)

4. Conclusion

The first part of this chapter is devoted to the stability of particular classes of linear continuous and discrete time delayed systems. Here, we present a number of new results concerning stability properties of this class of systems in the sense of Lyapunov and non-Lyapunov and analyze the relationship between them. Some open question can arise when particular choice of parameters \(p \) and \(q \) is needed, see (Su & Huang 1992), (Xu & Liu 1994) and (Su 1994).

The geometric theory of consistency leads to the natural class of positive definite quadratic forms on the subspace containing all solutions. This fact makes possible the construction of Lyapunov stability theory even for linear continuous singular time delayed systems (LCSTDS) and linear discrete descriptor time delayed systems (LDDTDS) in that sense that asymptotic stability is equivalent to the existence of symmetric, positive definite solutions to a weak form of Lyapunov continuous (discrete) algebraic matrix equation (Owens, Debeljkovic 1985) respectively, incorporating condition which refers to time delay term.

To assure asymptotical stability for (LCSTDS) it is not only enough to have the eigenvalues of the matrix pair \((E, A)\) in the left half complex plane or within the unit circle, respectively, but also to provide an impulse-free motion and some other certain conditions to be fulfilled for the systems under consideration. The idea and the approach, in this exposure, are based upon the papers by (Owens, Debeljkovic1985) and (Tissir, Hmamed 1996).

Some different approaches have been shown in order to construct Lyapunov stability theory for a particular class of autonomous (LCSTDS) and (LDDTDS). The second part of the chapter is concerned with the stability of particular classes of (LCSTDS) and (LDDTDS). There, we present a number of new results concerning stability properties of this class of systems in the sense of non-Lyapunov (finite time stability, practical stability, attractive practical stability, etc.) and analyse the relationship between them.
And finally this chapter extends some of the basic results in the area of non-Lyapunov to linear, continuous singular time invariant time-delay systems (LCSTDS) and (LDDTDS). In that sense the part of this result is hence a geometric counterpart of the algebraic theory of Campbell (1980) charged with appropriate criteria to cover the need for system stability in the presence of actual time delay term. To assure practical stability for (LCSTDS) it is not enough only to have the eigenvalues of matrix pair \((E, A)\) somewhere in the complex plane, but also to provide an impulse-free motion and certain conditions to be fulfilled for the system under consideration.

Some different approaches have been shown in order to construct non-Lyapunov stability theory for a particular class of autonomous (LDDTDS). The geometric description of consistent initial conditions that generate tractable solutions to such problems and the construction of non-Lyapunov stability theory to bound rates of decay of such solutions are also investigated. Result are based on existing Lyapunov-like functions and their properties on sub-space of consistent initial functions (conditions). In particular, these functions need not to have:

1. Properties of positivity in the whole state space
2. Negative derivatives along the system trajectories.

And finally a quite new approach leads to the sufficient delay–independent criteria for finite and attractive practical stability of \((LCSTDS)\) and \((LDDTDS)\).

Stability issues, as well as time delay and singularity phenomena play a significant role in modeling of real systems. A need for their consideration arises from growing interest and extensive application possibilities in different areas such as large-scale systems, flexible light-weight structures and their vibration and noise control, optimization of smart structures \((Nestorovic et al. 2005, 2006, 2008)\) etc. Development of reliable models plays a crucial role especially in early development phases, which enables performance testing, design review, optimization and controller design \((Nestorovic & Trajkov 2010.a)\). Assumptions introduced along with model development, especially e.g. reduction of large numerical models of smart structures require consideration of many important questions from the control theory point of view, whereby the stability and singularity phenomena count among some of the most important. Therefore they represent the focus of the authors’ ongoing and further research activities \((Debeljovic et al. 2011.b, Nestorovic & Trajkov 2010.b)\).

5. Acknowledgment

This work has been supported by the Ministary of Science and Technological Department of Serbia under the Project ON 174 001 and partly by the German Research Foundation DFG under the Project SFB 837.

6. References

Debeljkovic, D. Lj., S. B. Stojanovic, M. B. Jovanovic, S. A. Milinkovic, (2004.b) A Short Note to the Lyapunov Stability of \(x(k + 1) = A_0 x(k) + A_1 x(k - 1) \) New Results, *Proc. CSCSC 04* Shenyang (China), Avgust 08-10, pp. 11-14.

Debeljkovic, D. Lj., T. Nestorovic, I. M. Buzurovic, G. V. Simeunovic, (2011.b) On non-Lyapunov delay-independent and delay-dependent criteria for particular class of
continuous time delay systems, *Proc. CDC*, December 3-5, Orlando (Florida), to be submitted.

Tissir, E. & A. Hmamed, (1996) Further Results on Stability of \(\dot{x}(t) = Ax(t) + Bx(t-\tau) \), *Automatica*, 32 (12), 1723-1726, ISSN 0005-1098.

Time delay is very often encountered in various technical systems, such as electric, pneumatic and hydraulic networks, chemical processes, long transmission lines, robotics, etc. The existence of pure time lag, regardless if it is present in the control or/and the state, may cause undesirable system transient response, or even instability. Consequently, the problem of controllability, observability, robustness, optimization, adaptive control, pole placement and particularly stability and robustness stabilization for this class of systems, has been one of the main interests for many scientists and researchers during the last five decades.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:
