Reliability modeling and analysis of flexible manufacturing cells

Mehmet Savsar
Kuwait University
Kuwait

1. Introduction

During the past half century, market competition has been very intense and production companies have been trying to find more efficient ways to manufacture their products. While during the period 1960 to 1970 manufacturing cost was the primary concern, later it was followed by product quality and delivery speed. New strategies had to be formulated by companies to adapt to the environment in which they operate, to be more flexible in their operations, and to satisfy different market segments. As a result of these efforts, a new manufacturing technology, called Flexible Manufacturing Systems (FMS), was innovated. FMS is a philosophy, in which "systems" is the key concept. A system view is incorporated into manufacturing. FMS is also one way that manufacturers are able to achieve agility, to have fastest response to the market, to operate with the lowest total cost, and to gain the greatest skills in satisfying the customers.

Today flexibility means to produce reasonably priced customized products of high quality that can be quickly delivered to customers. With respect to manufacturing, flexibility could mean the capability of producing different products without major retooling; ability to change an old line to produce new products; or the ability to change a production schedule to handle multiple parts. From customer’s point of view, flexibility is the ability to have flexible speed of delivery. With respect to operations, flexibility means the ability to efficiently produce highly customized and unique products. With respect to capacity, flexibility means the ability to rapidly increase or decrease production levels or to shift capacity quickly from one product or service to another. Finally, strategically flexibility means the ability of a company to offer a wide variety of products to its customers. In a manufacturing system, machine flexibility, material handling flexibility, and operation flexibility are the important aspects considered.

The idea of an FMS was proposed in England in 1960s under the name "System 24", which was a flexible machining system that could operate without human operators 24 hours a day under computer control. Initial emphasis was on automation rather than the reorganization of workflow. Initial FMS were very large and complex, consisting of many Computer Numerical Controlled (CNC) machines and sophisticated material handling systems, such
as robots, automated guided vehicles (AGV) and automated pallets, all controlled by complex software. Part and tool handling robots could handle any family of parts for which the system had been designed and developed. Only a limited number of industries could afford investing in a highly expensive FMS as described above. However, the current trend is toward small versions of the traditional FMS, called flexible manufacturing cells (FMC) or flexible manufacturing modules (FMM). Today one or more CNC machines served by one or more robots and a pallet system are considered a flexible cell and two or more cells are considered as a flexible manufacturing system. Other related systems are Flexible Assembly Cells (FAC), Flexible Manufacturing Groups (FMG), Flexible Production Systems (FPS), and Flexible Manufacturing Lines (FML).

A basic FMC consists of a robot, one or more flexible machines including inspection, and an external material handling system such as an automated pallet for moving blanks and finished parts into and out of the cell. The robot is utilized for internal material handling which includes machine loading and unloading. The FMC is capable of doing different operations on a variety of parts, which usually form a part family with selection by a group technology approach. Chan and Bedworth (1990) indicated that the most feasible approach to automate a production system with flexibility is to initially incorporate small FMC into the system. This approach requires lower investment, less risk, and also satisfies many of the benefits gained through larger and more costly structures, such as flexible manufacturing systems (FMS). While FMS are very expensive and generally require investments in millions of dollars, FMC are less costly, smaller and less complex systems. Therefore, for smaller companies with restricted capital resources, a gradual integration is initiated with limited investment in a small FMC, which facilitates subsequent integration into a larger system, such as an FMS.

Machining cells are widely used in industry to process a variety of parts to achieve high productivity in production environments with rapidly changing product structures and customer demand. They offer flexibility to be adapted to the changes in operational requirements. There are various types of Flexible Manufacturing Cells (FMC) incorporated into Flexible Manufacturing Systems (FMS) with a variety of flexible machines for discrete part machining. In addition to discrete part machining systems, there are different types of assembly machines and CNC punching press systems, which are also configured as flexible cells. FMS and FMC performance depends on several operational and system characteristics, which may include part scheduling and system operational characteristics. In the past, most of the FMC related research has been in the areas of part scheduling and system control. Scheduling algorithms are developed to determine the best processing sequence of parts to optimize FMC performance and equipment utilization. It has also been realized that system characteristics, such as design configuration and operation of an FMC have significant effect on its performance. Machining rate, pallet capacity, robot and pallet speed, and equipment failure and repair rates are important system characteristics affecting FMC performance. Several models have been developed for FMS and FMC in relation to the effects of different parameters on system performance. Wang and Wan (1993) studied the dynamic reliability of a FMS based on fuzzy information. Yuanidis et al. (1994) used a heuristic procedure called group method of data handling to assess FMS reliability with minimal data available. Han et al. (2006) analyzed FMC reliability through the method of fuzzy fault tree based on
triangular fuzzy membership. Khodabandehloo and Sayles (2007) investigated the applicability of fault tree analysis and event tree analysis to production reliability in FMS and concluded that event tree analysis was more effective in solving this problem. Henneke and Choi (1990), Savsar and Cogun (1993), and Cogun and Savsar (1996) have presented stochastic and simulation models for evaluating the performance of FMC and FMS with respect to system configuration and component speeds, such as machining rate, robot and pallet speeds. Koulamas (1992) and Savsar (2000) have looked into the reliability and maintenance aspects and presented stochastic models for the FMC, which operate under stochastic environment with tool failure and replacement consideration. They developed Markov models to study the effects of tool failures on system performance measures for a FMC with a single machine served by a robot for part loading/unloading and a pallet for part transfers. There are several other studies related to the reliability analysis of manufacturing systems. Butler and Rao (1993) use symbolic logic to analyze reliability of complex systems. Their heuristic approach is based on artificial intelligence and expert systems. Black and Mejabi (1995) have used object oriented simulation modeling to study reliability of complex manufacturing equipment. They presented a hierarchical approach to model complex systems.

Simeu-Abazi, et. al. (1997) uses decomposition and iterative analysis of Markov chains to obtain numerical solutions for the reliability and dependability of manufacturing systems. Adamyan and He (2002) presented a methodology to identify the sequences of failures and probability of their occurrences in an automated manufacturing system. They used Petri nets and reachability trees to develop a model for sequential failure analysis in manufacturing systems. Aldaihani and Savsar (2005a) and Savsar (2008) presented a stochastic model and numerical solutions for a reliable FMC with two machines served by a single robot. Savsar and Aldaihani (2004) and Savsar and Aldaihani (2008) have developed stochastic models for unreliable FMC systems with two unreliable machines served by a robot and a pallet system. Aldaihani and Savsar (2005b) and Aldaihani and Savsar (2008) have presented stochastic models and numerical solutions for performance analysis of an unreliable FMC with two unreliable machines served by two robots and a pallet. These performance measures are compared to the previous results obtained for the FMC with a single robot. Abdulmalek, Savsar, and Aldaihani (2004) presented a simulation model and analysis for tool change policies in a FMC with two machines and a robot, based on ARENA simulation software. Closed form analytical solutions are obtained and FMC analysis is performed for different performance measures and selected cell operations. The results are also compared to reliable FMC system.

This chapter summarizes several stochastic models and results for reliability analysis of FMC systems with single machines and multiple machines served by one or two robots for loading and unloading of parts; and a pallet handling device for moving batch of parts into and out of the cell. Because flexible manufacturing cells are designed to process a wide variety of parts, they have relatively high utilizations compared to traditional machining systems. As a result of high utilizations, these systems are subject to failures more than traditional systems. Therefore, reliability and availability analysis of FMC systems are extremely important for flexible manufacturing systems. The model and the results
presented in this chapter can be useful for design engineers as well as operational managers in production and maintenance planning.

2. Operation of a Flexible Manufacturing Cell

Operations of two FMC systems are illustrated in Figure 1. In case of two machine FMC system, operation sequence is as follows: An automated pallet handling system delivers n blanks consisting of different parts into the cell. The robot reaches to the pallet, grips a blank, moves to the first machine and loads the blank. While the machine starts operation on the part, the robot reaches the pallet, grips the second part and moves to the second machine and loads it. Next, robot reaches to the machine which finishes its operation first, unloads the finished part and loads a new part. The loading/unloading operation continues in this way with the preference given to the machine which finishes its operation first. After the machining operations of all parts on the pallet are completed, the pallet with n finished parts moves out and a new pallet with n blanks is delivered into the cell by the pallet handling system automatically. In case of the FMC with a single machine, robot loads the machine with a blank and waits until the part is completed; then unloads the finished part and loads a new blank. The operation sequence continues in this manner. Machines are assumed to be unreliable and fail during the operations. Time to failure and time to repair are assumed to follow exponential distribution. Due to the introduction of different parts into the FMC, failures of machines, and random characteristics of system operation, processing times as well as loading/unloading times are random, which present a complication in studying and modeling FMC operations. If there were no randomness in system parameters and the pallet exchange times were neglected, the problem could be analyzed by a man-machine assignment chart for non-identical machines, and by a symbolic formulation for identical machines. However, because of random operations the system needs to be modeled by a stochastic process.

![Fig. 1. Flexible manufacturing cells: (a) one machine, a robot and a pallet; and (b) two machines, a robot and a pallet](image-url)
3. Reliability Modeling of a FMC with a Single Machine

In this section, stochastic models are presented for the FMC system with a single machine as discussed above and illustrated in Figure 1a. A reliability model and related analysis are presented for the FMC system with a single machine and a robot. Processing times on the machine, robot loading and unloading times, pallet transfer times and the equipment up and down times are all assumed as random quantities that follow exponential distribution. The model is applied to a case example and the results are presented in graphical forms.

3.1 A Stochastic Model for a FMC with a Single Machine

In order to model FMC operations, the following system states and notations are defined:

\[S_{ijk}(t) = \text{state of the FMC at time } t \]
\[P_{ijk}(t) = \text{probability that the system will be in state } S_{ijk}(t) \]
\[i = \text{number of blanks in FMC (on the pallet and on the machine or the robot gripper)} \]
\[j = \text{state of the production machine (} j=0 \text{ if the machine is idle; } j=1 \text{ if the machine is operating on a part; and } j=d \text{ if the machine is down under repair)} \]
\[k = \text{state of the robot (} k=1 \text{ if the robot is loading/unloading the machine; } k=0 \text{ if the robot is not engaged in loading/unloading the machine; and } k=d \text{ if the robot is down under repair)} \]
\[\tau = \text{loading rate of the robot (parts/unit time)} \]
\[u = \text{unloading rate of the robot (parts/unit time)} \]
\[z = \text{combined loading/unloading rate of the robot (parts/unit time)} \]
\[\omega = \text{pallet transfer rate (pallets/unit time)} \]
\[\lambda = \text{failure rate of the production machine (} 1/\lambda = \text{mean time between machine failures)} \]
\[\mu = \text{repair rate of the production machine (} 1/\mu = \text{mean machine repair time)} \]
\[\alpha = \text{failure rate of the robot} \]
\[\beta = \text{repair rate of the robot} \]
\[\nu = \text{machining rate (or production rate) of the machine (parts/unit time)} \]
\[n = \text{pallet capacity (number of parts/pallet)} \]
\[Q_c = \text{production output rate of the cell in terms of parts/unit time} \]

Using the state probability definitions and the notations above, the stochastic transition flow diagram of the unreliable FMC operation, with machine tool and robot failures, is shown in Figure 2. Using the fact that the net flow rate at each state is equal to the difference between the rates of flow in and flow out, the following system of differential equations are constructed for the unreliable FMC with machine and robot failures. While robot failures are not as significant as machine failures, they are incorporated into the model in the last column of figure 2 as \(S_{ijd} \).
For the steady state solution, we let \(t \to \infty \) and thus \(dP(t)/dt \to 0 \) in the equation set (1) above. The resulting set of difference equations are solved by using the fact that sum of all state probabilities is 1;

\[
P_{ijk} = \sum_{i} \sum_{j} \sum_{k} 1
\]

The following general solution set given by equation (3) is obtained for the state probabilities.

\[
\begin{aligned}
P_{0,0,0} &= \lambda P_{0,1,0} - \mu P_{0,0,0} \\
P_{0,1,0} &= \sigma P_{0,0,0} \\
P_{0,0,1} &= \alpha P_{0,0,1} - \beta P_{0,0,1} \\
\end{aligned}
\]

where, \(s = \frac{\lambda}{\mu} \); \(r = \frac{\sigma}{\beta} \) and,

\[
P_{0,0,0} = s P_{0,0,0} + r P_{0,0,0}
\]

System performance is measured by the utilization rate of the production machine (\(L_m \)), utilization rate of the robot (\(L_r \)) and utilization rate of the pallet handling system (\(L_h \)). These measures are calculated by using the system state probabilities determined above. \(P_{0,0,0} \) represents the utilization rate of the handling system. It is fraction of the time that handling system is loading/unloading a pallet at a rate of \(\sigma \) pallets/unit time or \(\sigma \) parts/unit time. Thus,

\[
L_h = P_{0,0,0}
\]

Similarly, utilization rate of the machine is the fraction of time that the machine is operational, and is given by:

\[
L_m = P_{0,0,0} = \frac{n \sigma}{\mu} P_{0,0,0}
\]

and utilization rate of the robot is the fraction of time that the robot is operational given by:

\[
L_r = P_{0,0,0} = \frac{n \sigma}{\mu} P_{0,0,0}
\]

Fig. 2. Stochastic transition diagram of the FMC with machine tool and robot failures

\[
\begin{aligned}
dP_{n,0,0}(t) / dt &= \omega P_{n,0,0} - \mu P_{n,0,0} \\
dP_{n-1,d,0}(t) / dt &= \lambda P_{n-1,1,0} - \mu P_{n-1,d,0} \\
dP_{n-1,0,0}(t) / dt &= \nu P_{n-1,0,0} + \mu P_{n-1,d,0} - (\lambda + \nu) P_{n-1,1,0} \\
dP_{n-1,0,1}(t) / dt &= \beta P_{n-1,1,0} - (\alpha + z) P_{n-1,0,1} \\
dP_{n-1,0,0}(t) / dt &= \alpha P_{n-1,1,0} - \beta P_{n-1,0,1} \\
dP_{n-x,d,0}(t) / dt &= \lambda P_{n-x,1,0} - \mu P_{n-x,d,0} \\
dP_{n-x,1,0}(t) / dt &= \nu P_{n-x,0,0} + \mu P_{n-x,d,0} - (\lambda + \nu) P_{n-x,1,0} \\
dP_{n-x,0,1}(t) / dt &= \beta P_{n-x,1,0} - (\alpha + z) P_{n-x,0,1} \\
dP_{n-x,0,0}(t) / dt &= \alpha P_{n-x,1,0} - \beta P_{n-x,0,1} \\
dP_{0,d,0}(t) / dt &= \lambda P_{0,0,0} - \mu P_{0,d,0} \\
dP_{0,1,0}(t) / dt &= \nu P_{0,0,0} + \mu P_{0,d,0} - (\lambda + \nu) P_{0,1,0} \\
dP_{0,0,1}(t) / dt &= \beta P_{0,0,0} - (\alpha + u) P_{0,0,1} \\
dP_{0,0,0}(t) / dt &= \alpha P_{0,0,1} - \beta P_{0,0,0} \\
dP_{0,0,0}(t) / dt &= \sigma P_{0,0,0} \\
\end{aligned}
\]
For the steady state solution, we let \(t \to \infty \) and thus \(\frac{dP(t)}{dt} \to 0 \) in the equation set (1) above. The resulting set of difference equations are solved by using the fact that sum of all state probabilities is 1;

\[
\sum_{i=0}^{n} \sum_{j=0}^{d} \sum_{k=0}^{d} P_{ijk} = 1
\]

(2)

The following general solution set given by equation (3) is obtained for the state probabilities.

\[
P_{i,1,0} = (\omega / \nu)P_{0,0,0}, \quad i=0,\ldots,n-1;
\]

\[
P_{i,d,0} = (\lambda \omega / \mu \nu)P_{0,0,0}, \quad i=0,\ldots,n-1;
\]

\[
P_{i,0,1} = (\omega / z)P_{0,0,0}, \quad i=1,\ldots,n-1;
\]

\[
P_{0,0,1} = (\omega / u)P_{0,0,0};
\]

\[
P_{i,0,d} = (\alpha \omega / \beta z)P_{0,0,0}, \quad i=1,\ldots,n-1;
\]

\[
P_{0,0,d} = (\alpha \omega / \beta u)P_{0,0,0};
\]

\[
P_{n,0,0} = (\omega / i)P_{0,0,0};
\]

(3)

where, \(s=\lambda / \mu; \quad r=\alpha / \beta \) and,

\[
P_{0,0,0} = 1 / \{n \omega \nu^{-1}(1 + s) + \omega(1 + r)(nz^{-1} + u^{-1} - z^{-1}) + \omega r^{-1} + 1\}
\]

(4)

System performance is measured by the utilization rate of the production machine \((L_m) \), utilization rate of the robot \((L_r) \) and utilization rate of the pallet handling system \((L_h) \). These measures are calculated by using the system state probabilities determined above. \(P_{0,0,0} \) represents the utilization rate of the pallet handling system. It is fraction of the time that handling system is loading/unloading a pallet at a rate of \(\omega \) pallets/unit time or \(n \omega \) parts/unit time. Thus,

\[
L_h = P_{0,0,0}
\]

(5)

Similarly, utilization rate of the machine is the fraction of time that the machine is operational, and is given by:

\[
L_m = \sum_{i=0}^{n-1} P_{i,1,0} = (n \omega / \nu)P_{0,0,0}
\]

(6)

and utilization rate of the robot is the fraction of time that the robot is operational given by:
\[L_r = P_{n,0,0} + \sum_{i=1}^{n-1} P_{i,0,1} + P_{0,0,1} = [\omega/\nu + (n-1)\omega/z + \omega/\mu]P_{0,0,0} \] (7)

The above model is for the unreliable cell with machine tool and robot failures. For the reliable FMC without machine and robot failures, system states corresponding to \(S_{i,d,0} \) and \(S_{i,0,d} \), where \(i=0,1,...,n-1 \), are not applicable. A procedure similar to the above could be applied to the rest of the transition diagram and the utilization rates of the reliable FMC components could be obtained. However, an easier way is to use the fact that a reliable FMC is a system with no failures, i.e. \(\lambda=0 \) and \(\alpha=0 \). Thus, setting \(s=\lambda/\mu=0 \) and \(r=\alpha/\beta=0 \) in Equations 5-7, the following set of equations (8-10) are easily obtained for the reliable FMC.

\[
L_h = P_{0,0,0} = 1/[1+n\omega/\nu+(n-1)\omega/z+(u+1)\omega/\mu]
\] (8)

\[
L_m = \frac{n\omega}{\nu} P_{0,0,0}
\] (9)

\[
L_r = [(n-1)\omega/z + \omega/\nu + \omega/\mu] P_{0,0,0}
\] (10)

Production output rate of the cell, \(Q_c \), is defined as the number of parts processed by the machine per unit time. It is obtained for both, reliable and unreliable cells as follows:

\[
Q_c = L_m\nu = (n\omega/\nu)P_{0,0,0}\nu = n\omega P_{0,0,0}
\] (11)

Equations (5-11) are easily used to determine the utilization rates of the cell components, as well as the production output rate of the cell, for both, reliable and unreliable cell systems. It is interesting to note that the ratios \(L_m/L_h \) and \(L_r/L_h \) are the same for reliable and unreliable cells. This can be easily verified by substituting the corresponding values and determining the ratios:

\[
L_m/L_h = n\omega/\nu \quad \text{is the same for both reliable and unreliable cells. Similarly,}
\]

\[
L_r/L_h = (n-1)\omega/z + \omega/\nu + \omega/\mu \quad \text{is also the same for reliable and unreliable cells.}
\]

The implications of these results are that failures of system components have no effects on the two ratios given above. The functional relationships or the proportionality rates are the same regardless of the cell reliability. In other words, relative utilization rates of the machine and the robot remain constant regardless of the degree of reliability introduced. In order to illustrate application of the stochastic model, a case example is solved with the model and the results are presented in the next section.

3.2 Case Example for a Single-Machine FMC

A case example has been selected with the following FMC parameters in order to illustrate the application of the model. The results are presented in graphical forms.

Followings are the assumed mean values for various cell parameters:

- Operation time per part = \(\nu^{-1} = 4 \) time units
- Robot loading time (for the first part) = \(\nu^{-1} = 1/6 \) time units
Robot loading/unloading time for subsequent parts = $z^{-1} = 1/3$ time units
Robot unloading time for the last part = $u^{-1} = 1/6$ time units
Time between machine tool failures = $\lambda^{-1} = 100$ time units
Repair time (down time) of the machine tool = $\mu^{-1} = 10$ time units
Time between robot failures = $\alpha^{-1} = Assumed to be zero for this case.
Repair time (down time) of the robot = $\beta^{-1} = Assumed to be zero for this case.
Pallet transfer time = $\omega^{-1} = 4$ time units per pallet
Pallet capacity, n, has been varied from 1 to 20 parts/pallet.

Utilization rates of the production machine, the robot, and the pallet handling systems are compared for the reliable and unreliable FMC with component failures in order to visualize the effects of these failures on the utilization of different components for different pallet capacities. Figure 3 illustrates the utilization rate of the production machine. As it can be seen from this figure, machine tool utilization is highly affected by the pallet capacity up to a certain level and stabilizes thereafter. However, there is significant gap between fully reliable cell and the unreliable cell, with specified component hazard rates. Decrease in machine tool utilization is directly reflected in cell productivity. The mentioned gap increases with increasing pallet capacity. Production output rate of the cell, Q_c, is obtained by multiplying the machine tool utilization with the average production output rate. For example, in case of the pallet capacity of 20 parts/pallet, production output rate of the fully reliable cell would be about $Q_c = L_m \cdot V = (0.88)(1/4)=0.22$ parts/time unit, while the production output rate of the unreliable cell would be about $(0.75)(1/4) = 0.19$ parts/time unit. Note that, since the average processing time is 4 time units, the average output rate is $1/4 = 0.25$ parts/time unit if the machine is fully utilized. Figure 4 shows the percentage of time the machine would be down due to failures. Reliable cell has zero percentage in this case. Figure 5 shows the percent of time machine is idle with respect to pallet capacity. Reliable cell has slightly higher idle time as compared to unreliable cell, but the trend is very similar. Figure 6 shows robot utilization for both reliable and unreliable cases. Robot utilization for reliable cell is much higher than that for unreliable cell due to low utilization of the machine. Figure 7 shows the pallet utilizations, which is almost the same for reliable and unreliable cell. Figure 8 shows the production output rate of the FMC as a function of pallet capacity. There is a significant difference in production rates between the reliable and unreliable cells. The results that are shown in these figures with respect to the effects of pallet capacity on various FMC performance measures, may seem to be obvious; however, exact effects of specific parameters on various FMC performance measures can not be predicted without formulation and solution of the models presented in this chapter. These models are useful for design engineers and operational managers for analysis of FMC systems operating under different conditions.
3.3 Economic Analysis of a Single-Machine FMC

In order to demonstrate application of the stochastic model for single-machine FMC to cost analysis and optimization of the system, the following notations and cost equations are developed and a case example is solved to illustrate the results.

- C_m: Total machine cost per unit time
- C_{mf}: Fixed machine cost per unit of time
- C_{mv}: Variable machine cost per unit time
- C_r: Total robot cost per unit time
- C_{rf}: Fixed robot cost per unit time
- C_{rv}: Variable robot cost per unit time
- C_p: Total pallet cost per unit time
- C_{pf}: Fixed pallet cost per unit time
- C_{pv}: Variable pallet cost per unit time

\[C_m = C_{mf} + C_{mv} v_1 \]
\[C_r = C_{rf} + C_{rv} z_i \]
\[C_p = C_{pf} C_{pv} n \]

Total FMC cost per unit of production, TC, is given by the following equation, where Q_c is production rate (units produced per unit time).

\[TC = \frac{(C_m + C_r + C_p)}{Q_c} \]

In order to illustrate behavior of the system with respect to various cost measures, a case problem with specified cost and speed parameters are selected as follows: $z = 3$; $C_{mf} = 1.0$; $C_{mv} = 0.2$; $C_{rf} = 0.108$; $C_{pv} = 0.054$; $C_{pf}\ = 0.108$; $C_{rv} = 0.054$. Other parameters are as given in section 2.2. Figure 9 shows the behavior of FMC cost per unit of production as function of pallet capacity for the reliable and unreliable FMC operations. Optimum occurs at $n=4$ and $n=3$ for the reliable and unreliable FMC systems respectively. The trend in cost is almost the

Fig. 3. Effects of pallet capacity on machine utilization
Fig. 4. Effects of pallet capacity on machine down state
Fig. 5. Effects of pallet capacity on machine idle state
Fig. 6. Effects of pallet capacity on robot utilization

Fig. 7. Effects of pallet capacity on pallet utilization
Fig. 8. Effects of pallet capacity on FMC Production rate
3.3 Economic Analysis of a Single-Machine FMC

In order to demonstrate application of the stochastic model for single-machine FMC to cost analysis and optimization of the system, the following notations and cost equations are developed and a case example is solved to illustrate the results.

\[C_m = C_{mf} + C_{mv} \cdot v_1 \]
\[C_r = C_{rf} + C_{rv} \cdot z_i \]
\[C_p = C_{pf} \cdot C_{pv} \cdot n \]

Total FMC cost per unit of production, \(TC \), is given by the following equation, where \(Q_c \) is production rate (units produced per unit time).

\[TC = \frac{(C_m + C_r + C_p)}{Q_c} \]

In order to illustrate behavior of the system with respect to various cost measures, a case problem with specified cost and speed parameters are selected as follows: \(z = 3 \); \(C_{mf} = 1.0 \); \(C_{mv} = 0.2 \); \(C_{rf} = 0.108 \); \(C_{rv} = 0.054 \); \(C_{pf} = 0.108 \); \(C_{pv} = 0.054 \). Other parameters are as given in section 2.2. Figure 9 shows the behavior of FMC cost per unit of production as function of pallet capacity for the reliable and unreliable FMC operations. Optimum occurs at \(n=4 \) and \(n=3 \) for the reliable and unreliable FMC systems respectively. The trend in cost is almost the
same in both cases. Total costs show a decreasing pattern with increasing pallet capacity with optimum pallet capacity ranging between 3 and 4 units depending on the FMC operational conditions. It is possible to include other cost parameters related to lot sizes (pallet capacity) and develop cost models that could be utilized in real life applications. These results show the usefulness of the stochastic model presented with respect to cost optimization of FMC systems.

![Fig. 9. Total FMC cost as a function of pallet capacity.](image)

4. Reliability Modeling of a FMC with Multiple Machines

In this section, reliability modeling of a FMC with two machines and a single robot is presented. Processing times on the machines, robot loading and unloading times, pallet transfer times, machine operation times, as well as machine failure and repair times are all assumed as random quantities that follow exponential distribution. Development of the model follows the same procedure as it was done for the single-machine FMC system with necessary modifications for multiple machines.

4.1 A Stochastic Model for a FMC with Two Machines and a Robot

In order to analyze FMC operations with stochastic parameters, stochastic model is developed using Markov chains as in the previous section. First, the following system states and notations are defined:

- \(S_{ijkl}(t) \) = state of the FMC at time \(t \), with subscripts \(i, j, k, \) and \(l \) as described below.
- \(P_{ijkl}(t) \) = probability that the system will be in state \(S_{ijkl}(t) \)
- \(i \) = number of blanks in FMC (on the pallet, the machine, or the robot gripper)
- \(j \) = state of the production machine 1 (\(j=0 \) if the machine is idle; \(j=1 \) if the machine is operating on a part;
In order to analyze FMC operations with stochastic parameters, stochastic model is necessary modifications for multiple machines.

4.1 A Stochastic Model for a FMC with Two Machines and a Robot

In this section, reliability modeling of a FMC with two machines and a single robot is presented. Processing times on the machines, robot loading and unloading times, pallet transfer times, machine operation times, as well as machine failure and repair times are all assumed as random quantities that follow exponential distribution. Development of the state probabilities and FMC system performance measures.

Mathematical Model

The transition flow diagram has not been shown here. Using the fact that the rate of flow between the states are developed and presented here. Because of its large size, the transition flow diagram has not been shown here. Using the fact that the net flow rate at each state is equal to the difference between the rates of flow in and flow out, a set of differential equations are obtained for the system. For example, for the state (n,001), rate of change with respect to time t is given by:

\[
\frac{dP_{n,001}(t)}{dt} = (w)P_{0,000} - (l_1)P_{n,001}
\]

At steady state, \(t \to \infty\); \(dP_{n,001}(t)/dt \to 0\) and the differential equation changes into a difference equation. The resulting difference equations for all states are given by the equation sets (16a), (16b) and (16c) below. The whole set of equations is divided into three subsets: The first subset (16a) includes the equations for the loading of initial parts; the last subset (16c) includes the equations for the unloading of the final parts; and the subset (16b) includes all the general equations for intermediate parts. These equations must be solved to obtain the state probabilities and FMC system performance measures.

\[
\begin{align*}
\lambda_2 P_{n-1,310} + \mu_1 P_{n-2,310} & - (v_1 + v_2 + \lambda_2) P_{n-2,130} = 0 \\
\lambda_2 P_{n-1,310} & - (v_1 + \lambda_1 + \mu_2) P_{n-1,310} = 0 \\
\lambda_1 P_{n-1,102} & - (l_2 + \mu_1) P_{n-1,302} = 0 \\
\mu_1 P_{n-1,302} & - l_2 P_{n-1,202} = 0 \\
\lambda_2 P_{n-2, 2,110} + \mu_1 P_{n-2,2,330} & - (v_1 + \lambda_2 + \mu_2) P_{n-2,130} = 0 \\
\lambda_1 P_{n-1,310} & - (v_1 + v_2 + \lambda_1) P_{n-1,310} = 0 \\
\lambda_2 P_{n-2,310} + \mu_1 P_{n-2,310} & - (v_1 + v_2 + \lambda_2) P_{n-2,330} = 0 \\
\lambda_2 P_{n-2,310} & - (v_1 + \lambda_1 + \mu_2) P_{n-2,310} = 0 \\
\lambda_1 P_{n-2,330} + \mu_1 P_{n-2,330} & - (\mu_1 + \mu_2) P_{n-2,330} = 0 \\
\mu_1 P_{n-2,310} & - l_2 P_{n-2,211} = 0 \\
\lambda_2 P_{n-2,330} & - (v_2 + z_1 + \lambda_2) P_{n-2,031} = 0 \\
\lambda_1 P_{n-2,031} & - (v_1 + v_2 + \lambda_1) P_{n-2,031} = 0 \\
\lambda_2 P_{n-2,202} + \mu_1 P_{n-2,202} & - (v_1 + z_2 + \lambda_2) P_{n-2,202} = 0 \\
\mu_1 P_{n-2,202} & - l_2 P_{n-2,202} = 0
\end{align*}
\]

(16a)
transition rate matrix. It is known that all the equations in \(PT=0 \) are not linearly independent by \(PT=0 \), where \(P \) is the state probabilities vector to be determined and \(T \) is the probability solution for the state probabilities, as well as system performance measures for applications in order to obtain a solution for a given system. Therefore, it is preferable to have a closed form values of \(n \), exact numerical solution becomes tedious and one has to resort to software in

Exact numerical solutions can be obtained for all state probabilities. However, for large values of \(n \), exact numerical solution becomes tedious and one has to resort to software in order to obtain a solution for a given system. Therefore, it is preferable to have a closed form solution for the state probabilities, as well as system performance measures for applications.

\[
\begin{align*}
 z_1 P_{x+1,031} + \lambda_2 P_{x,110} + \mu_1 P_{x,330} - (v_1 + \lambda_1 + \mu_2) P_{x,130} &= 0 \\
 z_1 P_{x+1,011} + z_2 P_{x+1,102} + \mu_1 P_{x,310} + \mu_2 P_{x,130} - (v_1 + v_2 + \lambda_1 + \lambda_2) P_{x,110} &= 0 \\
 z_2 P_{x+1,302} + \lambda_1 P_{x,110} + \mu_2 P_{x,330} - (\lambda_2 + \mu_1 + v_2) P_{x,310} &= 0 \\
 \lambda_1 P_{x,130} + \lambda_2 P_{x,310} - (\mu_1 + \mu_2) P_{x,330} &= 0 \\
 v_1 P_{x,102} - z_2 P_{x,202} &= 0 \\
 v_1 P_{x,110} + z_2 P_{x+1,021} + \mu_1 P_{x,302} - (v_1 + z_2 + \lambda_1) P_{x,102} &= 0 \\
 v_2 P_{x,310} + \lambda_1 P_{x,102} - (z_2 + \mu_1) P_{x,302} &= 0 \\
 v_1 P_{x,130} + \lambda_2 P_{x,011} - (z_1 + \mu_2) P_{x,031} &= 0 \\
 v_1 P_{x,110} + z_2 P_{x+1,202} + \mu_2 P_{x,031} - (v_2 + z_1 + \lambda_2) P_{x,011} &= 0 \\
 v_2 P_{x,011} - z_1 P_{x,021} &= 0 & \text{for } x = 1, 2, ..., n-3
\end{align*}
\]

The system consists of \(10n+1 \) equations and equal number of unknowns. For example, for \(n=4 \), number of system states, as well as number of equations, is \(10(4) +1=41 \) and for \(n=10 \), it is \(10(10) + 1 = 101 \). It is possible to obtain an exact solution for this system of equations given by \(PT=0 \), where \(P \) is the state probabilities vector to be determined and \(T \) is the probability transition rate matrix. It is known that all the equations in \(PT=0 \) are not linearly independent and thus the matrix \(T \) is singular, which does not have an inverse. We must add the normalizing condition given by equation (17) below, which assures that sum of all state probabilities, is 1, to the three sets of equations above by eliminating one of them.

\[
\sum_{i=0}^{n} \sum_{j=0}^{2} \sum_{k=0}^{2} \sum_{l=0}^{2} P_{ijkl} = 1
\]
of the model in system design and analysis. Savsar and Aldaihani (2008) have obtained a closed form solution for this problem, which involved sophisticated algebraic analysis and manipulations. In the following section, we present the results obtained for the closed form solution.

4.2 A Closed Form Solution for Two-Machine FMC Model

After a systematic procedure and comprehensive algebraic manipulations, equation sets (16a, 16b and 16c) are solved for the unknown probabilities. Equation set (16a) consists of 14 equations and involves n, n-1, and n-2; equation set (16b) consists of 10 equations with \(x \) for \(x=1,\ldots,n-3 \); equation set (16c) consists of 17 equations involving with \(n=0 \). In order to present the solution, a set of intermediary variables are defined based on the system parameters as shown in tables 1-3.

Based on the definitions given in tables 1-3, algebraic equation sets 16a, 16b, and 16c are solved step by step for the unknown state probabilities. The solution results are summarized in Table 4 for \(n \geq 3 \). In the case of \(n<3 \), a solution will be obtained only for \(n=2 \), since FMC system has two machines and therefore it is physically meaningless to have \(n=1 \) part delivered into the system by the pallet. Therefore, a special solution is obtained for \(n=2 \) due to the reduction in number of equations in this case. To find \(P_{0,000} \) we use the renumbering of the state probabilities as shown in table 4. For example, state probability \(P_{n,01} \) is represented by \(P_{n,1} \); \(P_{n,1,012} \) by \(P_{n,1,2} \); \(P_{n,1,302} \) by \(P_{n,1,3} \); and so on until \(P_{0,002} \) by \(P_{0,40} \). We have a normalizing condition represented by equation (17) above and the last equation in table 4, in addition to a set of 40 state equations (set 18) in the table. Since the sum of probabilities has to be 1, we need to use the normalizing condition to determine \(P_{0,000} \). Substituting the state probabilities into the normalizing condition given by equation 17, we obtain equation 19 given below. Finally, values of state probabilities, \(P_{ijkl} \) given in table 4, are substituted into equation 19 to obtain \(P_{0,000} \) with respect to known parameters. All state probabilities are then determined with respect to \(P_{0,000} \).

<table>
<thead>
<tr>
<th>(a = v_1 + \lambda_1)</th>
<th>(b = v_2 + \lambda_2)</th>
<th>(c = v_1 + v_2 + \lambda_1 + \lambda_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D = v_1 + v_2 + \mu_1 + \mu_2)</td>
<td>(e = z_1 + \mu_2)</td>
<td>(f = z_2 + \mu_1)</td>
</tr>
<tr>
<td>(g = v_1 + l_2 + \lambda_1)</td>
<td>(h = v_1 + \lambda_1 + \mu_2)</td>
<td>(k = v_2 + \lambda_2 + \mu_1)</td>
</tr>
<tr>
<td>(p = v_1 + z_2 + \lambda_1)</td>
<td>(q = v_2 + z_1 + \lambda_2)</td>
<td>(r = l_2 + \mu_1)</td>
</tr>
<tr>
<td>(s = \mu_1 + \mu_2)</td>
<td>(t = \lambda_1 + \lambda_2)</td>
<td>(x = v_1 + u_2 + \lambda_1)</td>
</tr>
<tr>
<td>(y = v_2 + u_1 + \lambda_2)</td>
<td>(A = u_2 + \mu_1)</td>
<td>(B = u_1 + \mu_2)</td>
</tr>
</tbody>
</table>

Table 1. First Set of Variables

\(C_1 = \frac{\lambda_2}{h} \)	\(C_2 = \frac{\mu_1}{h} \)	\(C_3 = \frac{l_2}{c}(gr - \mu_1 \lambda_1) \)
\(C_4 = \frac{u_1}{c} \)	\(C_5 = \frac{\mu_2}{c} \)	\(C_6 = \frac{l_2}{k}(gr - \mu_1 \lambda_1) \)
\(C_7 = \frac{\lambda_1}{k} \)	\(C_8 = \frac{\mu_2}{k} \)	\(C_9 = \frac{\lambda_1}{s} \)
\(C_{10} = \frac{\lambda_2}{s} \)	\(C_{11} = \frac{q_0}{\mu_2} \lambda_2 \)	\(C_{12} = \frac{gr}{\mu_1 \lambda_1} \)
\(C_{13} = \frac{pf}{\mu_1 \lambda_1} \)	\(C_{14} = \frac{\mu_1 \lambda_1 - kc}{C} \)	\(C_{15} = \frac{\mu_1 \lambda_1 - \mu_2 \lambda_2}{C} \)
\(C_{16} = \frac{\mu_2 \lambda_2 - sk}{C} \)		

Table 2. Second Set of Variables
<table>
<thead>
<tr>
<th>$F_1 = \omega / l_1$</th>
<th>$F_2 = rw / C_{12}$</th>
<th>$F_3 = \lambda_1 w / C_{12}$</th>
<th>$F_4 = v_1 w / l_2 C_{12}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F_5 = \frac{C_2 C_{10} + C_1 C_7}{C_{10} + C_7} + \frac{C_1 C_3 (1 - C_4 C_{10}) + C_1 C_4 C_6}{C_{10} - C_7}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F_6 = [C_3 (1 - C_4 C_{10}) + C_4 C_6 + F_2 C_9 (C_5 C_{10} - C_4 C_9) - F_3 C_5] / (1 - C_4 C_7 - C_4 C_{10})$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F_7 = \left(\frac{F_2 C_{10} - (C_4 C_{10} - C_4 C_9) F_5 - C_4 C_{10}}{C_4}\right)$</td>
<td>$F_8 = [F_6 - C_2 F_5 - C_3] / C_4$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F_9 = ev_1 F_6 / C_{11} + ev_1 rw / C_{11} C_{12} + v_1 \mu_2 F_5 / C_{11}$</td>
<td>$F_{10} = v_2 F_9 / z_1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F_{11} = (v_2 F_5 + \lambda_2 F_9) / c$</td>
<td>$F_{12} = v_2 F_6 f + v_2 \mu_1 F_8 / C_{13}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F_{13} = v_2 F_9 / f + \lambda_2 F_{12} / f$</td>
<td>$F_{14} = v_1 F_{12} / z_1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_1 = (z_1 F_9 + z_2 F_{12}) / c$</td>
<td>$A_2 = A_1 + \mu_2 z_1 F_{13} / k c$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_3 = [C_{14} C_{15} / k \lambda_2 c^2] - \mu_2 / c$</td>
<td>$A_4 = \mu_1 / k c + s \mu_1 C_{14} / (\lambda_2 k c^2)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_5 = A_1 C_{14} / k c$</td>
<td>$A_6 = (\mu_1 / k c) - \mu_2 C_{14} / k c \lambda_2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_7 = -z_1 C_{14} (v_1 F_9 + \lambda_2 F_9) / k c \lambda_2 e$</td>
<td>$A_8 = -h C_{14} / (k c \lambda_2) - \mu_2 / c$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R_1 = z_1 \left(\frac{v_1 D_9 + \lambda_2 D_{14}}{e}\right)$</td>
<td>$R_2 = z_1 D_{14} + z_2 D_{12}$</td>
<td>$R_3 = z_2 D_{13}$</td>
<td></td>
</tr>
<tr>
<td>$G_1 = [sk \lambda_2 / C_{16}] + C_{15}$</td>
<td>$G_2 = [s \lambda_2 / C_{16}] + \lambda_2 / c$</td>
<td>$G_3 = \lambda_2 R_2 - \left[s \lambda_2 R_3 / C_{16}\right]$</td>
<td></td>
</tr>
<tr>
<td>$G_4 = -[\mu_1 k \lambda_2 / C_{16} + h]$</td>
<td>$G_5 = \lambda_2 - \mu_1 \lambda_1 / C_{16}$</td>
<td>$G_6 = \mu_1 \lambda_2 R_3 / C_{16} - R_1$</td>
<td></td>
</tr>
<tr>
<td>$F_{15} = [A_4 (A_2 + A_7) - A_6 (A_2 + A_5)] / (A_2 A_8 - A_3 A_6)$</td>
<td>$F_{16} = [A_2 F_{15} - (A_2 + A_5)] / A_4$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F_{17} = -[k c \lambda_2 + \mu_2 k F_{15} + \mu_2 F_{16}] / (\mu_1 \lambda_1 - k c)$</td>
<td>$F_{18} = \left[c F_{17} - \mu_2 F_{15} - c A_1\right] / \mu_1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F_{19} = v_2 \left[\beta F_{17} + \beta F_9 + \mu_1 F_{18}\right] / (C_{13})$</td>
<td>$F_{20} = (v_2 F_{18} + \lambda_2 F_{19}) / f$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F_{21} = v_1 F_{19} / z_2$</td>
<td>$F_{22} = v_1 (v_2 F_{13} / z_1 + \mu_2 F_{15} / e + F_{13}) / C_{11}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F_{23} = v_2 F_{22} / z_1$</td>
<td>$F_{24} = (v_2 F_{19} + \lambda_2 F_{23}) / e$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F_{25} = (G_2 G_3 - G_3 G_1) / (G_2 G_4 - G_4 G_1)$</td>
<td>$F_{26} = (G_2 G_3 - G_2 G_4) / G_2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F_{27} = (-\lambda_2 R_3 - k \lambda_2 F_{25} - \lambda_2 F_{26}) / C_{16}$</td>
<td>$F_{28} = \left(-\lambda_1 F_{25} + s F_{27}\right) / \lambda_2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F_{29} = (v_2 x F_{26} + v_2 \lambda_2 F_{28} + \lambda_2 v_2 D_{14}) / (A x - \mu_1 \lambda_1)$</td>
<td>$F_{30} = (v_2 F_{26} + v_2 D_{14} + \mu_2 F_{28}) / x$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F_{31} = v_1 F_{30} / u_2$</td>
<td>$F_{32} = \left(B v_1 F_{26} + B v_1 D_{12} + B v_2 F_{28}\right) / (B y - \mu_2 \lambda_2)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F_{33} = (v_1 F_{26} + \lambda_2 F_{32}) / B$</td>
<td>$F_{34} = v_2 F_{32} / u_1$</td>
<td>$F_{33} = u_2 (F_{33} + F_{30}) / (a - \lambda_1)$</td>
<td></td>
</tr>
<tr>
<td>$F_{35} = (u_1 F_{26} + \lambda_2 F_{35}) / \mu_1$</td>
<td>$F_{35} = (u_1 F_{26} + \lambda_2 F_{35}) / \mu_1 (b - \lambda_2)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F_{36} = (u_1 F_{26} + \mu_2 F_{35}) / B$</td>
<td>$F_{36} = (u_1 F_{26} + \mu_2 F_{35}) / B (b - \lambda_2)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F_{37} = (u_1 F_{36} + \lambda_2 F_{37}) / b$</td>
<td>$F_{38} = (u_1 F_{36} + \mu_2 F_{37}) / b (b - \lambda_2)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Third Set of Variables
Table 4. Equation set (18); summary of solutions (for \(n \geq 3 \))

From equation (17) and substitution of the values results in the following equation:

\[
\sum_{i=0}^{n} \sum_{j=0}^{2} \sum_{k=0}^{2} \sum_{l=0}^{2} P_{ijkl} = \left[P_{0,000} + \sum_{j=2}^{4} P_{n-1,j} + \sum_{j=5}^{14} P_{n-2,j} + (n-3) \sum_{j=15}^{24} P_{x,j} + \sum_{j=25}^{40} P_{0,j} \right] + P_{0,000} = 1 \quad (19)
\]

\[
= \left[F_1 + \sum_{j=2}^{4} F_j + \sum_{j=5}^{14} F_j + (n-3) \sum_{j=15}^{24} F_j + \sum_{j=25}^{40} F_j + 1 \right] P_{0,000} = 1
\]

which is solved to obtain \(P_{0,000} \) as:

\[
P_{0,000} = \frac{1}{\left[F_1 + \sum_{j=2}^{4} F_j + \sum_{j=5}^{14} F_j + (n-3) \sum_{j=15}^{24} F_j + \sum_{j=25}^{40} F_j + 1 \right]}
\]
Finally $P_{0,000}$ is substituted back into the equations in table 4 to obtain values of state probabilities. Equation (19) and the solution obtained for the state probabilities are valid for $n \geq 3$. For $n=2$, special modifications need to be made since none of the equations in set 16b are applicable in the case of $n=2$. Only the first 4 equations in set 16a and all 17 equations in set 16c are applicable for the case $n=2$. In the set 16a, n is replaced by 2. Table 5 shows the modified parameter equations for $n=2$, while all other equations are the same as those given for $n=3$ in tables 1-3. In addition to the changes given in table 5, there are slight modifications in some of the equations in the set 16c. These changes are listed below:

- Delete all the terms involving z_1 including, $(z_1P_{1,011})$ from the second equation, and $(z_1P_{1,021})$ from the sixth equation of the set 16c; replace z_2 by l_2 in the second equation of the set 16c to obtain the following equations respectively.

$$
\lambda_2 P_{0,110} + \mu_1 P_{0,330} - (v_1 + \lambda_1 + \mu_2) P_{0,130} = 0
$$

$$
\mu_1 P_{0,310} + \mu_2 P_{0,130} - (v_1 + v_2 + \lambda_1 + \lambda_2) P_{0,110} + l_2 P_{1,102} = 0
$$

$$
v_2 P_{0,110} + \mu_1 P_{0,302} - (v_1 + u_2 + \lambda_1) P_{0,102} = 0
$$

- Replace z_2 with l_2 in the third and in the ninth equations of the set 16c to obtain the following equations respectively.

$$
l_2 P_{1,302} + \lambda_1 P_{0,110} + \mu_2 P_{0,330} - (v_2 + \lambda_2 + \mu_1) P_{0,310} = 0
$$

$$
v_1 P_{0,110} + l_2 P_{1,302} + \mu_2 P_{0,031} - (v_2 + u_1 + \lambda_2) P_{0,011} = 0
$$

$G_3 = \lambda_2 l_2 F_2 - \frac{s\mu_1 \lambda_2 F_3}{C_{16}}$	$G_6 = \frac{\mu_1 \lambda_2 l_2 F_3}{C_{16}}$
$F_{27} = -\frac{-\lambda_2 l_2 F_3 - k\lambda_1 F_{25} - \lambda_1 \lambda_2 F_{26}}{\lambda_2 \mu_2 - ks}$	$F_{29} = \frac{v_2 (xF_{28} + \lambda_1 F_{26})}{Ax - \lambda_1 \mu_1}$
$F_{30} = \frac{v_2 F_{26} + \mu_1 F_{29}}{x}$	$F_{31} = \frac{v_1}{u_2} F_{30}$
$F_{32} = \frac{Bv_1 F_{26} + B\mu_1 F_{25}}{By - \mu_2 \lambda_2}$	All other values are as given in table 4.

Table 5. Definition of variables for $n=2$

All the remaining solution steps are similar to the general case of $n \geq 3$. Thus, for $n=2$, equations 1-4 of the set (18) in table 4 remain the same, equations 5-24 of the set (18) are dropped, and equations 25-40 of the set (18) are changed according to the modifications mentioned above. Once the state probabilities are determined, it is then possible to determine various system and subsystem performance measures.

$$
M1\ idle = P_{0,000} \left[1 + F_1 + \sum_{i=1}^{11} F_i + (n - 3) \sum_{i=22}^{24} F_i + \sum_{i=32}^{34} F_i + \sum_{i=37}^{40} F_i \right] \quad (20)
$$
M1 busy = \(P_{0,000} \left[F_2 + F_5 + F_6 + F_{12} + (n-3)(F_{15} + F_{17} + F_{19}) + F_{25} + F_{26} + F_{30} + F_{36} \right] \) (21)

\[
M1 \text{ waiting} = P_{0,000} \left[F_4 + F_{14} + (n-3)F_{21} + F_{31} \right]
\] (22)

M1 repair = \(P_{0,000} \left[F_3 + F_7 + F_8 + F_{13} + (n-3)(F_{16} + F_{18} + F_{20}) + \sum_{i=27}^{29} F_i + F_{35} \right] \) (23)

M2 idle = \(P_{0,000} \left[1 + \sum_{i=1}^{4} F_i + \sum_{i=12}^{14} F_i + (n-3)\sum_{i=19}^{21} F_i + \sum_{i=29}^{31} F_i + F_{35} + F_{36} + F_{39} + F_{40} \right] \) (24)

M2 busy = \(P_{0,000} \left[F_6 + F_8 + F_9 + (n-3)(F_{17} + F_{18} + F_{22}) + F_{26} + F_{28} + F_{32} + F_{37} \right] \) (25)

\[
M2 \text{ waiting} = P_{0,000} \left[F_{10} + (n-3)F_{23} + F_{34} \right]
\] (26)

M2 repair = \(P_{0,000} \left[F_5 + F_7 + F_{11} + (n-3)(F_{15} + F_{16} + F_{24}) + F_{25} + F_{27} + F_{33} + F_{38} \right] \) (27)

Robot idle = \(P_{0,000} \left[1 + \sum_{i=5}^{8} F_i + (n-3)\sum_{i=15}^{18} F_i + \sum_{i=25}^{28} F_i + \sum_{i=35}^{38} F_i \right] \) (28)

Robot busy with M1 = \(P_{0,000} \left[F_1 + \sum_{i=5}^{8} F_i + (n-3)\sum_{i=22}^{24} F_i + \sum_{i=32}^{34} F_i + F_{39} \right] \) (29)

Robot busy with M2 = \(P_{0,000} \left[\sum_{i=2}^{4} F_i + \sum_{i=12}^{14} F_i + (n-3)\sum_{i=19}^{21} F_i + \sum_{i=29}^{31} F_i + F_{40} \right] \) (30)

4.3 Case Example for a Two-Machine FMC

In this section, we present some numerical results for the two-machine unreliable FMC problem with different parameters. The results are also compared to the reliable FMC results in order to see the effects of equipment failures on system performance measures. The parameter values for the two-machine unreliable FMC system are shown in Table 6. The parameters for the reliable system are the same with the exception that there are no failures and repairs in the reliable system. Values given in the table are the mean values for various parameters and the mean is the inverse of the rate in each case. Figure 10 shows the production output rate as a function of the pallet capacity \(n \) at different robot loading/unloading rates, \(z \). As it is seen from the figure, production rate increases with increasing pallet capacity and robot loading rates. While the rate of increase is higher initially, it levels off at higher values of \(n \).
Future Manufacturing Systems

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation time per part</td>
<td>$1/v_m = 1$ time unit, $m=1, 2$ for machines 1 and 2</td>
</tr>
<tr>
<td>Robot loading time for the first part</td>
<td>$1/l_m = 0.25$ time units, for machines $m=1, 2$</td>
</tr>
<tr>
<td>Robot load/unload time for subsequent parts</td>
<td>$1/z_m = 0.5$ time units, $m=1, 2$</td>
</tr>
<tr>
<td>Robot unloading time for the last part</td>
<td>$1/u_m = 0.25$ time units, $m=1, 2$</td>
</tr>
<tr>
<td>Mean time to failure for machine m</td>
<td>$1/\lambda_m = 100$ time units</td>
</tr>
<tr>
<td>Mean time to repair the machine m</td>
<td>$1/\mu_m = 10$ time units</td>
</tr>
<tr>
<td>Pallet transfer time</td>
<td>$1/w = 1,\ldots,10$ time units per pallet</td>
</tr>
<tr>
<td>Pallet capacity</td>
<td>$n=4$ units</td>
</tr>
</tbody>
</table>

Table 6. Parameter values for the unreliable FMC system

Figure 11 shows the production rate of the FMC system as a function of pallet capacity (n) and four different machine repair rates ($\mu=0.05, 0.1, 0.5, 1$). Other parameters are kept constant as before. As the machine repair rates are increased, FMC production rate increases, but the increase is marginal when μ is changed from 0.5 to 1 repair per unit time. While it is not shown here, the effects of pallet capacity (n) and pallet loading rate (w) on FMC production rate has a similar trend. Production rate increases with increasing w up to a certain level and levels off after that. Effects of various parameters on FMC component utilizations, including the machines, the robot, and the pallet handling system, can also be obtained by the equations presented above.

Unreliable FMC system performance results obtained from the stochastic model presented in this paper are compared to the reliable FMC system performance results, whose model is reported elsewhere in Savsar and Aldaihani (2004) and Aldaihani and Savsar (2005a). Figure 12 shows the production output results for both the reliable and unreliable FMC system for a pallet capacity of $n=4$ units at different pallet transfer rates. Production rate increases with respect to pallet transfer rates for both, reliable and unreliable systems. Reliable FMC has 8-10% higher production rate than the unreliable FMC in this case. Production rate significantly increases with increasing pallet transfer rate up to the rate of 4 pallets per time unit. After this rate, production rate increases at a slower pace. Figure 13 compares machine utilizations for reliable and unreliable cells. Machine 1 has higher utilizations in either case because priority is given to machine 1 during initial loading when a pallet moves into the cell. Machine utilizations are significantly higher for reliable FMC than unreliable FMC. The utilization rates also increase sharply with respect to pallet transfer rates up to the rate of 4 pallets per time unit. After this, utilization increases are not as significant. The best pallet transfer rate must be established for each particular FMC using similar analysis as presented here. Other performance measures can be compared by using the models presented.
Operation time per part \(\frac{1}{v_m} = 1 \) time unit, \(m=1, 2 \) for machines 1 and 2

Robot loading time for the first part \(\frac{1}{l_m} = 0.25 \) time units, for machines \(m=1, 2 \)

Robot load/unload time for subsequent parts \(\frac{1}{z_m} = 0.5 \) time units, \(m=1, 2 \)

Robot unloading time for the last part \(\frac{1}{u_m} = 0.25 \) time units, \(m=1, 2 \)

Mean time to failure for machine \(m \) \(\frac{1}{\lambda_m} = 100 \) time units

Mean time to repair the machine \(m \) \(\frac{1}{\mu_m} = 10 \) time units

Pallet transfer time \(\frac{1}{w} = 1, \ldots, 10 \) time units per pallet

Pallet capacity \(n=4 \) units

Table 6. Parameter values for the unreliable FMC system

Fig. 11 shows the production rate of the FMC system as a function of pallet capacity (\(n \)) and four different machine repair rates (\(\frac{1}{\mu} = 0.05, 0.1, 0.5, 1 \)). Other parameters are kept constant as before. As the machine repair rates are increased, FMC production rate increases, but the increase is marginal when \(\frac{1}{\mu} \) is changed from 0.5 to 1 repair per unit time.

While it is not shown here, the effects of pallet capacity (\(n \)) and pallet loading rate (\(\frac{1}{z} \)) on FMC production rate has a similar trend. Production rate increases with increasing \(\frac{1}{z} \) up to a certain level and levels off after that. Effects of various parameters on FMC component utilizations, including the machines, the robot, and the pallet handling system, can also be obtained by the equations presented above.

Unreliable FMC system performance results obtained from the stochastic model presented in this paper are compared to the reliable FMC system performance results, whose model is reported elsewhere in Savsar and Aldaihani (2004) and Aldaihani and Savsar (2005a).

Fig. 12 shows the production output results for both the reliable and unreliable FMC system for a pallet capacity of \(n=4 \) units at different pallet transfer rates. Production rate increases with respect to pallet transfer rates for both, reliable and unreliable systems. Reliable FMC has 8-10% higher production rate than the unreliable FMC in this case. Production rate significantly increases with increasing pallet transfer rate up to the rate of 4 pallets per time unit. After this rate, production rate increases at a slower pace. Figure 13 compares machine utilizations for reliable and unreliable cells. Machine 1 has higher utilizations in either case because priority is given to machine 1 during initial loading when a pallet moves into the cell. Machine utilizations are significantly higher for reliable FMC than unreliable FMC. The utilization rates also increase sharply with respect to pallet transfer rates up to the rate of 4 pallets per time unit. After this, utilization increases are not as significant. The best pallet transfer rate must be established for each particular FMC using similar analysis as presented here. Other performance measures can be compared by using the models presented.

Fig. 10. Effects of pallet capacity (\(n \)) and robot loading rate (\(\frac{1}{z} \)) on FMC production rate.

Fig. 11. Effects of pallet capacity (\(n \)) and repair rate (\(\frac{1}{\mu} \)) on FMC production rate.
5. Reliability Modeling of FMC with Multiple Robots

FMC systems with more than one machine can be served with more than one robot depending on the requirements for loading and unloading operations. Figure 14 shows a FMC with two unreliable machines and two robots. Operation of the cell is similar to the FMCs discussed in section 1. The only difference here is that each machine is attended by a specific robot for loading and unloading operations, which are carried out according to a scheduling program. The robots, the machines, and the pallet must be coordinated by a common control system, which controls all the operations in the cell. When the parts of various shapes and types are delivered into the system, the control system can direct the robots for necessary loading and unloading activities.

5.1 A Stochastic Model for a FMC with Two Machines and Two Robots

In order to analyze reliability and performance of this FMC system, a stochastic model similar to the model given in section 3 has been developed by Aldaihani and Savsar (2008). This model is an extension of the model developed for the FMC with two machines and a single robot. The only addition here is another subscript in the state definition for the system due to one additional robot, which results in several additional state equations. In particular, the state of the system is described by $S_{i,j,k,l,m}(t)$ and probability of the system being in this state is given by $P_{i,j,k,l,m}(t)$, where:

- i = number of blanks in FMC (on the pallet, the machine, or the robot gripper)
- j = state of the production machine 1 ($j=0$ if the machine is idle; $j=1$ if the machine is operating on a part; and $j=2$ if the machine is under repair)
- k = state of the production machine 2 ($k=0$ if the M/C is idle; $k=1$ if the machine is operating on a part; and $k=2$ if the machine is under repair)

Fig. 12. Effects of pallet transfer rates on FMC production rates for unreliable and reliable FMC

Fig. 13. Effects of pallet transfer rates on FMC Machine utilizations for unreliable and reliable FMC
5. Reliability Modeling of FMC with Multiple Robots

FMC systems with more than one machine can be served with more than one robot depending on the requirements for loading and unloading operations. Figure 14 shows a FMC with two unreliable machines and two robots. Operation of the cell is similar to the FMCs discussed in section 1. The only difference here is that each machine is attended by a specific robot for loading and unloading operations, which are carried out according to a scheduling program. The robots, the machines, and the pallet must be coordinated by a common control system, which controls all the operations in the cell. When the parts of various shapes and types are delivered into the system, the control system can direct the robots for necessary loading and unloading activities.

5.1 A Stochastic Model for a FMC with Two Machines and Two Robots

In order to analyze reliability and performance of this FMC system, a stochastic model similar to the model given in section 3 has been developed by Aldaihani and Savsar (2008). This model is an extension of the model developed for the FMC with two machines and a single robot. The only addition here is another subscript in the state definition for the system due to one additional robot, which results in several additional state equations. In particular, the state of the system is described by $S_{i,j,k,l,m}(t)$ and probability of the system being in this state is given by $P_{i,j,k,l,m}(t)$, where

- $i =$ number of blanks in FMC (on the pallet, the machine, or the robot gripper)
- $j =$ state of the production machine 1 ($j=0$ if the machine is idle; $j=1$ if the machine is operating on a part; and $j=2$ if the machine is under repair)
- $k =$ state of the production machine 2 ($k=0$ if the M/C is idle; $k=1$ if the machine is operating on a part; and $k=2$ if the machine is under repair)
l = state of the robot 1 (l=0 if the robot is idle; l=1 if the robot is loading/unloading)
m= state of the robot 2 (l=0 if the robot is idle; l=1 if the robot is loading/unloading)

System parameters change slightly due to additional robot and the following notations are used:
l_r = loading rate of robot r for machine r (r=1,2) (parts/unit time)
u_r = unloading rate of robot r for machine r (r=1,2) (parts/unit time)
z_r = combined loading/unloading rate of robot r for machine r (r=1,2)
w = pallet transfer rate (pallets/unit time)
λ_r = failure rate of the production machine r (1/mean time between failures)
µ_r = repair rate of the production machine r (1/mean machine repair time)
v_r = machining rate (or production rate) of machine r (parts/unit time)
n = pallet capacity (number of parts/pallet)
Q_r = production output rate of the cell in terms of parts/unit time

A set of differential equations are obtained for the two-machine two-robot stochastic FMC in a similar way as it was done for the single robot case by using the fact that the net flow rate at each state is equal to the difference between the rates of flow in and flow out. For example, for the state (n,0011), rate of change with respect to time t is given by:

$$\frac{dP_{n,0011}(t)}{dt} = (w)P_{0,0000} - (l_1 + l_2)P_{n,0011}$$

At steady state, t→∞; dP(t)/dt→0 and the differential equation changes into a difference equation. The resulting difference equations for all states, which govern the FMC behavior at steady state, are given by equation set 31 below. These equations must be solved to obtain the state probabilities and system performance measures. There are 9n+4 equations and equal number of unknowns. It is difficult to obtain a closed form solution for these equations due to large number of states. However, exact numerical solutions have been obtained by using the MAPLE equation solver with symbolic manipulation.
each state is equal to the difference between the rates of
at steady state, \(t \to \infty \) a similar way as it was done for the single robot case by using the fact that the
A set of differential equations are obtained for the two-machine two-robot stochastic FMC in
obtained by using the MAPLE equation solver with symbolic manipulation.
equations due to large number of states. However, exact numerical solutions have been
equal number of unknowns. It is difficult to obtain a closed form solution for these
the state probabilities and system performance measures. There are 9n+4 equations and
the state \((n,0011)\), rate of change with respect to time \(t \) is given by:

\[
\begin{align*}
&v_r = \text{machining rate (or production rate) of machine } r \text{ (parts/unit time)} \\
u_r = \text{unloading rate of robot } r \text{ for machine } r \text{ (r=1,2) (parts/unit time)} \\
&\lambda_r = \text{failure rate of the production machine } r \text{ (1/ (unit time))} \\
&\mu_r = \text{mean time between failures} \\
&w = \text{pallet transfer rate (pallets/unit time)} \\
\end{align*}
\]

System parameters change slightly due to additional robot and the following
notations are used:

\[
\begin{align*}
v_2 & P_{n-2,1001} + z_1 P_{n-1,0011} + v_1 P_{n-1,1001} + v_2 P_{n-1,0110} - (z_1 + z_2) P_{n-1,0011} = 0 \\
v_1 P_{n-x,1001} + v_2 P_{n-x,0110} - (z_1 + z_2) P_{n-x,0011} = 0 \\
v_1 P_{n-x,1100} + z_2 P_{n-2,0110} + \mu_2 P_{n-x,0210} - (v_2 + z_1 + \lambda_2) P_{n-x,0011} = 0 \\
v_2 P_{n-x,1100} + z_1 P_{n-2,0110} + \mu_1 P_{n-x,0210} - (v_1 + z_2 + \lambda_1) P_{n-x,0011} = 0 \\
v_1 P_{n-x,2100} + \lambda_1 P_{n-x,0110} - (z_2 + \mu_1) P_{n-x,0011} = 0 \\
v_1 P_{n-x,1200} + \lambda_2 P_{n-x,0110} - (z_1 + \mu_2) P_{n-x,0011} = 0 \\
\end{align*}
\]

For example, for \(n=6 \), number of system states, as well as number of equations is \(9(6)+4=58 \).
In order to determine numerical solutions, for 58 state probabilities represented by the
vector, \(P \), the set of equations given by \(PT=0 \) must be solved for \(P \), where \(T \) is the probability
transition rate matrix, which is the matrix of the coefficients in equation set (31). It is known
that all the equations in \(PT=0 \) are not linearly independent and thus matrix \(T \) is singular
with no inverse. We must add the normalizing condition given by equation (32) below,
which assures that sum of all state probabilities is 1, to the set of 58 equations given for the
FMC case above by eliminating one of them.
Exact numerical solutions are obtained for each state probability. In the following section, several numerical solutions are obtained and the results are presented.

5.2 Case Example For Multi-Robot FMC System

In this section, we present numerical results of a case example for the FMC with two machines and two robots. The case example is solved by the proposed model and the results are presented in tabular form. Table 7 shows the operational parameters of the FMC system considered. The time related parameters are mean values in each case.

<table>
<thead>
<tr>
<th>Operational Parameters</th>
<th>Parameter Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean processing time per part, $1/v_r$</td>
<td>1.00 time unit, $r = 1$ and 2 (for machines 1 and 2)</td>
</tr>
<tr>
<td>Mean robot loading time for the first part, $1/l_r$</td>
<td>0.25 time units for machines and robots, $r = 1,2$</td>
</tr>
<tr>
<td>Mean robot loading/unloading time for subsequent parts, $1/z_r$</td>
<td>0.50 time units for both robots and machines, $r = 1,2$</td>
</tr>
<tr>
<td>Mean robot unloading time for last part, $1/u_r$</td>
<td>0.25 time units for robots and machines, $r = 1,2$</td>
</tr>
<tr>
<td>Mean time to failure for machine r, $1/\lambda_r$</td>
<td>100 time units for both machines, $r = 1,2$</td>
</tr>
<tr>
<td>Mean repair time of machine r, $1/\mu_r$</td>
<td>10 time units for both machines, $r = 1,2$</td>
</tr>
<tr>
<td>Mean pallet transfer time, $1/w$</td>
<td>Varied between 1,...,10 time units per pallet</td>
</tr>
<tr>
<td>Pallet capacity</td>
<td>$n = 4$ units.</td>
</tr>
</tbody>
</table>

Table 7. Multi-Robot FMC operational parameters considered in the analysis.

Results of analysis for the double robot FMC are shown in tabular form in table 8, which summarizes the percentages of times for system states, particularly the states in which each FMC component is idle, busy or under repair. One can use this table to evaluate performance of each system component, such as the fraction of time that each machine would be idle, under repair, or operational; or the fraction of time that each robot and the pallet would be idle or operational in the steady state. Figure 15 shows the production output rate of the FMC system with respect to pallet transfer rates at three different machine repair rates. As it is seen in the figure, when the repair rate is doubled from 0.1 to 0.2, the production rate increases twice more than the rate of increase when the repair rate is doubled from 0.2 to 0.4. The increase in the production rate as a function of the pallet rate is also shown in this figure. The trend in the production rate is similar to previous cases, that is, a pallet transfer rate of 3 or more units/unit time is effective for increasing production output rate under any possible repair policy. Such analysis are extremely useful for operational engineers and maintenance managers for effective operation of an FMC and for planning of maintenance/repair activities as well as for production planning.
several numerical solutions are obtained and the results are presented. Exact numerical solutions are obtained for each state probability. In the following section, planning of maintenance/repair activities as well as for production planning.

operational engineers and maintenance managers for effective operation of an FMC and for output rate under any possible repair policy. Such analysis are extremely useful for is, a pallet transfer rate of 3 or more units/unit time is effective for increasing production.

The demand for customized products has been continuously increasing in recent years and a great deal of attention has been given to automation of manufacturing, specifically to flexible manufacturing systems (FMS) and flexible manufacturing cells (FMC). FMC are less costly, smaller, and less complex systems than FMS. In order to get full benefit from these systems, they have to be analyzed in detail before implementation as well as during their operations. While modeling and analysis of traditional machines and production systems have been subject of extensive research over the past several years, not as many studies can be seen on FMC systems. Also, there are many books written about conventional manufacturing systems and very few on FMS and FMC systems.

In this chapter, we have presented a method for developing stochastic models to be used in the design and analysis of unreliable FMC systems with one or more machines that are served by one or more robots and a common pallet handling system. The models are used to determine system performance measures, such as production output rate and system component utilizations, under different parametric conditions. Exact solutions were obtained for the stochastic models either in closed form or numerically and case problems were solved by these models to illustrate their applications and the results obtained. As shown by various results and graphs, the models could be a useful tool in the design as well as in the operational phases of FMC. It was observed that the FMC production rate was significantly affected by cell parameters such as pallet capacity, pallet transfer rate, robot loading/unloading rates, or the repair rates of the machines. Equipment utilizations are also analyzed with respect to different parameters by using the models presented. These models could be useful for system designers, FMC manufacturers, and the operation engineers.

Table 7. Multi-Robot FMC operational parameters considered in the analysis.

<table>
<thead>
<tr>
<th>Operational Parameters</th>
<th>Parameter Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pallet capacity</td>
<td>n = 4 units.</td>
</tr>
<tr>
<td>Mean robot loading/unloading time</td>
<td>1/ur = 0.25 time units for machines and robots, r = 1, 2</td>
</tr>
<tr>
<td>Mean robot loading time for the first part</td>
<td>1/lr = 1/0.50 time units for both robots and machines, r = 1, 2</td>
</tr>
<tr>
<td>Mean robot unloading time for last part</td>
<td>1/vr = 0.50 time units for both robots and machines, r = 1, 2</td>
</tr>
<tr>
<td>Mean repair time of machine r</td>
<td>1/εr = 100 time units for both machines, r = 1, 2</td>
</tr>
<tr>
<td>Mean time to failure for machine r</td>
<td>1/λr = 10 time units for both machines, r = 1, 2</td>
</tr>
<tr>
<td>Mean pallet transfer time</td>
<td>1/w = Varied between 1,…,10 time units per pallet</td>
</tr>
</tbody>
</table>

Fig. 15. FMC production rate as a function of pallet transfer rate at three different machine repair rates

6. Conclusions

The demand for customized products has been continuously increasing in recent years and a great deal of attention has been given to automation of manufacturing, specifically to flexible manufacturing systems (FMS) and flexible manufacturing cells (FMC). FMC are less costly, smaller, and less complex systems than FMS. In order to get full benefit from these systems, they have to be analyzed in detail before implementation as well as during their operations. While modeling and analysis of traditional machines and production systems have been subject of extensive research over the past several years, not as many studies can be seen on FMC systems. Also, there are many books written about conventional manufacturing systems and very few on FMS and FMC systems.

In this chapter, we have presented a method for developing stochastic models to be used in the design and analysis of unreliable FMC systems with one or more machines that are served by one or more robots and a common pallet handling system. The models are used to determine system performance measures, such as production output rate and system component utilizations, under different parametric conditions. Exact solutions were obtained for the stochastic models either in closed form or numerically and case problems were solved by these models to illustrate their applications and the results obtained. As shown by various results and graphs, the models could be a useful tool in the design as well as in the operational phases of FMC. It was observed that the FMC production rate was significantly affected by cell parameters such as pallet capacity, pallet transfer rate, robot loading/unloading rates, or the repair rates of the machines. Equipment utilizations are also analyzed with respect to different parameters by using the models presented. These models could be useful for system designers, FMC manufacturers, and the operation engineers.
Table 8. Percentages of time in which system components are in different states at different pallet transfer rates (P.T.R.) for pallet capacity of n=4 and the FMC parameters of table 7.

Stochastic models and the closed form solution formulas obtained in this paper could be used to analyze and optimize the productivity and other performance measures of a FMC under different machine, robot, and pallet operational characteristics. Using the models presented in this paper, best parameter combinations can be determined for a given FMC system. In particular, best machining rates, robot loading and unloading rates, pallet capacity, and pallet transfer rates can be determined for a given set of FMC machine characteristics. Furthermore, reliability and availability analysis of the FMC system can be determined based on different failure/repair characteristics of the machines in the system. It is possible to optimize machine repair rates, based on other system parameters, to achieve maximum production output rates and other performance measures.

Acknowledgement

This chapter was prepared with a support from Kuwait University Research Administration under the research grant number EI01/08.

7. References

